рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция №2-1 Точка в ортогональной системе двух плоскостей проекций

Лекция №2-1 Точка в ортогональной системе двух плоскостей проекций - раздел Образование, Лекция №2-1 Точка В Ортогональной Системе Двух Плоскостей Проекций....

Лекция №2-1

Точка в ортогональной системе двух плоскостей проекций.

Точка

Геометрический объект любой сложности можно рассматривать как геометрическое место точек, по взаимному расположению, которых можно составить представление об объекте, а по расположению их относительно системы координат можно судить о положении его в пространстве.

Точка - одно из основных понятий геометрии. При систематическом изложении геометрии точка обычно принимается за одно из исходных понятий.

В современной математике точкой называют элементы весьма различной природы, из которых состоят различные пространства (например, в n-мерном евклидовом пространстве точкой называют упорядоченную совокупность из n- чисел)

 

Точка в ортогональной системе двух плоскостей проекций.

При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке 2.1. показана точка А и ее ортогональные проекции А1 и А 2.

Точку А1 называют горизонтальной проекцией точки А, точка А2 - ее фронтальной проекцией. Проекции точки всегда расположены на прямых, перпендикулярных оси x21 и пересекающих эту ось в одной и той же точке Аx.

а) модель   б) эпюр
Рисунок. 2.1. Точка в системе двух плоскостей проекций

Справедливо и обратное, т. е. Если на плоскостях проекций даны точки А1 и А2 расположенные на прямых, пересекающих ось x21 в точке Аx под прямым углом, то они являются проекцией некоторой точки А.

На эпюре Монжа проекции А1 и А2 окажутся расположенными на одном перпендикуляре к оси x21. При этом расстояние А1Аx -от горизонтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П2, а расстояние А2Аx - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П1.

Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.

а) модель   б) эпюр
Рисунок 2.2. Точки в различных четвертях пространства

На рисунке 2.2 представлены точки A B C D, расположенные в разных четвертях пространства и их эпюр (A- в первой четверти, B-во второй, C- в третьей и D- четвертой четверти)
Лекция №2-2

 

 

Точка в ортогональной системе трех плоскостей проекций

В практике изображения различных геометрических объектов, чтобы сделать проекционный чертеж более ясным, возникает необходимость использовать третью – профильную плоскость проекций П3,расположенную перпендикулярно к П1 и П2. В соответствии с ГОСТ 2.305-68 плоскости проекций П1 П2 и П3 относятся к основным плоскостям проекций.

а) модель   б) эпюр
Рисунок 2.3. Точка в системе трех плоскостей проекций

Модель трех плоскостей проекций показана на рисунке 2.3. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной.

Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 2.4, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z(абсцисса, ордината и аппликата).
Рисунок 2.4. Получение эпюра

 

Таблица 2.1.Знаки координат в октантах

 

Октант I II III IV V VI VII VIII
x + + + + - - - -
y + - - + + - - +
z + + - - + + - -

Если точка принадлежит хотя бы одной плоскости проекций, она занимает частное положение относительно плоскостей проекций. Если точка не принадлежит ни одной из плоскостей проекций, она занимает общее положение.

  Взаимное расположение точек

Можно выделить три основных варианта взаимного расположения точек:

1.Пусть точки А и В (рис.2.5) расположены в первой четверти так, что:

YА>YВ. Тогда точка А расположена дальше от плоскости П2 и ближе к наблюдателю, чем точка В

- XА<XВ. Тогда точка В расположена дальше от плоскости П3 и ближе к наблюдателю, чем (при взгляде слева) точка А; … 2.– YА=YВ, то точки А и В равноудалены от плоскости П2 и их горизонтальные… – ZА=ZВ, то точки А и В равноудалены от плоскости П1 и их фронтальные проекции расположатся на прямой А2В2// x12.…

Лекция №3-1

Прямая линия. Способы графического задания прямой линии.

Прямая линия - одно из основных понятий геометрии. При систематическом изложении геометрии прямая линия обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии. Если основой построения геометрии служит понятие расстояния между двумя точками пространства, то прямую линию можно определить как линию, вдоль которой расстояние между двумя точками является кратчайшим.

Прямая линия в линейной алгебре - линия первого порядка. Общее уравнение прямой:

Ах+Ву+С=0,

где А, В и С - любые постоянные.

 

 

Способы графического задания прямой линии

Для определения положения прямой в пространстве существуют следующие методы:

Двумя точками ( А и В ).

[A1B1]<[BA]; [A2B2]<[BA;] [A3B3]<[BA]. а) модель   б) эпюр Рисунок… Обозначим углы между прямой и плоскостями проекций через a- с плоскостью П1,…

Frac12;А1В1½=½BA½cos a

Frac12;A2B2½=½AB½cos b

Frac12;A3B3½=½AB½cos g.

Частный случай ½A1B1½=½A2B2½=½A3B3½ при таком соотношении прямая образует с плоскостями проекций равные между собой углы »g=b=a350, при этом каждая из проекций расположена под углом 450 к соответствующим осям проекций.

Двумя плоскостями (;a )b.

Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

Двумя проекциями.

  Плоскости a и b могут слиться в одну плоскость g, если, например, проекции [А1В1] и [А2В2] перпендикулярны оси x и…  

Лекция №3-2

Положение прямой относительно плоскостей проекций. Следы прямой.

1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.3.4). а) модель … 2. Прямые параллельные плоскостям проекций, занимают частное положение в… 2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.3.5). Для…

ZАz–В#þ.

а) модель   б) эпюр
Рисунок 3.10. Горизонтально-проецирующая прямая

4. Прямые параллельные биссекторным плоскостям (рис. 3.11)

АВ 1Sбис Þ xAx–B=; zBz–Ay=By–A; СDS2бис Þ xСx–D=; zDz–Cy=Cy–D.

5. Прямые перпендикулярные биссекторным плоскостям (рис. 3.11) АВS^2бис Þ xAx–B=; zBz–Ay=Вy–А;. СDS^1бис Þ xСx–D=;zDz–Cy=Cy–D …  

Лекция №3-3

В тех случаях когда точка и прямая лежат в плоскости уровня (параллельной какой-либо из плоскостей проекций П1, П2 и П3), то вопрос о взаимном…  

Лекция № 3-4

Для определения b-угол наклона отрезка к плоскости П2 построения аналогичные (рис.3.18). Только в треугольнике АВВ* сторона B|В*=|UDи…  

Лекция №3-5

Взаимное положение двух прямых. Параллельные прямые. Пересекающиеся прямые. Скрещивающиеся прямые.

Прямые линии в пространстве могут быть параллельными, пересекающимися и скрещивающимися. Рассмотрим подробнее каждый случай:

Параллельные прямые линии.

Проекции параллельных прямых на любую плоскость (не перпендикулярную данным прямым) - параллельны. Это свойство параллельного проецирования остается справедливым и для… Особый случай представляют собой прямые, параллельные одной из плоскостей проекций. Например, фронтальные и…

А2В2/ А1В1= С2Д2/ С1 Д1Þ АВ//СД

А2В2/ А1В1¹ С2Д2/ С1Д1Þ АВ#СД

а) модель   б) эпюр
Рисунок 3.20. Прямые параллельные профильной плоскости проекций

Пересекающиеся прямые.

Если прямые пересекаются, то точки пересечения их одноименных проекций находится на одной линии связи (рис. 3.21). а)… В общем случае справедливо и обратное утверждение, но есть два частных… 1. Если одна из прямых параллельна какой-либо из плоскостей проекций, например профильной плоскости проекций (рис.…

Скрещивающиеся прямые

Скрещивающимися называются две прямые не лежащие в одной плоскости.

Если прямые не пересекаются и не параллельны между собой, то точка пересечения их одноименных проекций не лежит на одной линии связи.

Этот способ определения видимости по конкурентным точкам. В данном случае точки А и В- фронтально конкурирующие, а С и Д -горизонтально…  

Лекция №3-6

Проекции плоских углов.

Рассмотрим ряд свойств ортогональных проекций плоских углов: 1. Если хотя бы одна из сторон прямого угла параллельна плоскости проекций, а… Дано: ÐАВС=90о; [ВС]// П1; [АС]#П1.

Задача. Дана плоскость (n,k) и одна проекция прямой m2.

Требуется найти недостающие проекции прямой m если известно, что она принадлежит плоскости, заданной пересекающимися прямыми n и k.

Проекция прямой m2 пересекает прямые n и k в точках В2 и С2, для нахождения недостающих проекций прямой необходимо найти недостающие проекции точек В и С как точек лежащих на прямых соответственно n и k.

Таким образом точки В и С принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эти точки, значит согласно аксиоме прямая принадлежит этой плоскости.

      а) модель   б) эпюр
Рисунок 5.14. Прямая и плоскость имеют две общие точки
           

Аксиома 2. Прямая принадлежит плоскости, если имеет с плоскостью одну общую точку и параллельна какой-либо прямой расположенной в этой плоскости (рис.5.15).

Задача.

Через точку В провести прямую m если известно, что она принадлежит плоскости заданной пересекающимися прямыми n и k.

Пусть В принадлежит прямой n лежащей в плоскости заданной пересекающимися прямыми n и k. Через проекцию В2 проведем проекцию прямой m2 параллельно прямой k2, для нахождения недостающих проекций прямой необходимо построить проекцию точки В1, как точки лежащей на проекции прямой n1 и через неё провести проекцию прямой m1 параллельно проекции k1.

Таким образом точки В принадлежат плоскости заданной пересекающимися прямыми n и k, а прямая m проходит через эту точку и параллельна прямой k, значит согласно аксиоме прямая принадлежит этой плоскости.

  а) модель   б) эпюр
Рисунок 5.15. Прямая имеет с плоскостью одну общую точку и параллельна прямой расположенной в этой плоскости
       

 

  Главные линии в плоскости

Среди прямых линий, принадлежащих плоскости, особое место занимают прямые, занимающие частное положение в пространстве:

1. Горизонтали h - прямые, лежащие в данной плоскости и параллельные горизонтальной плоскости проекций (hÎСВА, hP1, h2Ох,h3Оy)(рис.5.16).

  а) модель   б) эпюр
Рисунок 5.16. Горизонталь  
       

2. Фронтали f - прямые, расположенные в плоскости и параллельные фронтальной плоскости проекций (fÎСВА, fP2, f1Ох, f3Оz)(рис.5.17).

  а) модель   б) эпюр
Рисунок 5.17. Фронталь  
       

3. Профильные прямые р - прямые, которые находятся в данной плоскости и параллельны профильной плоскости проекций (рÎСВА, рP3, р1^Ох, р2^Ох)(рис.5.18).

  а) модель   б) эпюр
Рисунок 5.18. Профильная прямая  
       

Следует заметить, что следы плоскости можно отнести тоже к главным линиям. Горизонтальный след - это горизонталь плоскости, фронтальный - фронталь и профильный - профильная линия плоскости.

4. Линия наибольшего ската и её горизонтальная проекция образуют линейный угол j , которым измеряется двугранный угол, составленный данной плоскостью и горизонтальной плоскостью проекций (рис.5.19).

  а) модель   б) эпюр
Рисунок 5.19. Линия наибольшего ската
       

Очевидно, что если прямая не имеет двух общих точек с плоскостью, то она или параллельна плоскости, или пересекает ее.


 

Прямая линия, параллельная плоскости

При решении вопроса о параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскостии не принадлежит этой плоскости.

Задача. Дано: проекции плоскости общего положения ABC и прямой общего положения а.

Требуется оценить их взаимное положение (рис.5.20).

  а) модель   б) эпюр
Рисунок 5.20. Прямая параллельная плоскости
       

Для этого через прямую а проведем вспомогательную секущую плоскость g - в данном случае горизонтально проецирующая плоскость. Найдем линию пересечения плоскостейg и АВС- прямую п (DF). Проекция прямой п на горизонтальную плоскость проекций совпадает с проекцией а1 и со следом плоскости g. Проекция прямой п2 параллельна а2, п3 параллельна а3, следовательно, прямая а параллельна плоскости AВС.

 

  Прямая линия, пересекающая плоскость

Нахождение точки пересечения прямой линии и плоскости – основная задача начертательной геометрии.

Задача. Дано: плоскость AВС и прямая а.

Требуется найти точку пересечения прямой с плоскостью и определить видимость прямой по отношению к плоскости.

Для решения задачи:

1. Через горизонтальную проекцию прямой а1 проведем вспомогательную горизонтально проецирующую плоскость g (таким образом а g Î).

2. Горизонтальный след плоскости g1 пересекает проекцию плоскости A1В1С1 в точках D1 и F1, которые определяют положение горизонтальной проекции п1- линии пересечения плоскостей g и AВС. Для нахождения фронтальной и профильной проекции п спроецируем точки D и F на фронтальную и профильную плоскости проекций.

3. На фронтальной и профильной проекциях линия пересечения плоскостей п пересекает проекции а в точке К, которая и является проекцией точки пересечения прямой а с плоскостью AВС, по линии связи находим горизонтальную проекцию К1.

4. Методом конкурирующих точек определяем видимость прямой а по отношению к плоскости AВС.

  а) модель   б) эпюр
Рисунок 5.21. Нахождение точки пересечения прямой и плоскости
       

Таким образом алгоритм решения задачи состоит из следующей последовательности действий (рис.5.21):

1. Построение вспомогательной секущей плоскости g ( горизонтально – проецирующая плоскость), которую проводят через прямую а (а)gÎ;

2. Построение линии пересечения вспомогательной плоскости g и заданной плоскости a (п)gÇa=;

3. Определение искомой точки К, как точки пересечения двух прямых, заданной - а и полученной в результате пересечения плоскостей – п (К=а Ç п). В качестве вспомогательной плоскости g рекомендуется брать одну из проецирующих плоскостей.

4. Определение видимости прямой аотносительно плоскости a.

  Прямая линия перпендикулярная плоскости.

Докажем следующую теорему о перпендикуляре к плоскости: Если прямая перпендикулярна плоскости, то горизонтальная проекция этой прямой перпендикулярна горизонтальной проекции горизонтали плоскости, а фронтальная проекция – фронтальной проекции фронтали плоскости.

Пусть прямая n,перпендикулярная плоскости, пересекает плоскость BCD в точке N, тогда по условию nперпендикулярна любой прямой плоскости. Проведем в плоскости BCDгоризонтальh, а на основании теоремы о проецировании прямого угла можно утверждать, что на горизонтальную плоскость проекций они проецируются под прямым углом, т.е. n1 ^h1. Аналогично для фронтали – f ^ n Þ f2 ^ n2.

Справедлива и обратная теорема: Если проекции прямой перпендикулярны одноименным проекциям соответствующих главных линий плоскости (горизонтали и фронтали), то такая прямая перпендикулярна плоскости.

Доказательство следует из теоремы о проецировании прямого угла.

Исходя из рассмотренных теорем, можно решить задачу о построении перпендикуляра к плоскости из точки А (рис.5.22).

Задача. Дано: плоскость ВСDи точка А.

Требуетсяпостроить прямую линию n проходящую через точку А и перпендикулярную плоскости ВСD.

В плоскости ВСD построим фронталь f и горизонталь h. В горизонтальной плоскости проекций проведем через точку А1 прямую n1 перпендикулярно горизонтальной проекции горизонтали h1, а на фронтальной плоскости проекций через точку А2 прямую n2 перпендикулярно фронтальной проекции фронтали f2, согласно выше сказанному полученная прямая n будет перпендикулярна плоскости ВСD.

  а) модель   б) эпюр
Рисунок 5.22. Построение прямой, перпендикулярной плоскости
       

 

  Взаимное расположение точки и плоскости

Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет.

Если точка принадлежит плоскости то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.

Рассмотрим пример (рис.5.23): Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(ab).

Задача. Дано: плоскость a(а,в)и проекция точки А2.

Требуетсяпостроить проекцию А1 если известно, что точка А лежит в плоскости в,а.

Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2и b2 в точках С2 и В2 (С,aÎ BaÎ Þ maÎ). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, maÎ Þ АaÎ).

 

  а) модель   б) эпюр
Рисунок 5.23. Точка, принадлежащая плоскости
       

 

Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2и b2 в точках С2 и В2 (СÎ,aBÞaÎmaÎ). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, m ÞaÎ АaÎ).

 


Лекция №5_5

 

Взаимное расположение точки и плоскости

Возможны два варианта взаимного расположения точки и плоскости: либо точка принадлежит плоскости, либо нет.

Если точка принадлежит плоскости то из трех проекций, определяющих положение точки в пространстве, произвольно задать можно только одну.

Рассмотрим пример (рис.5.23): Построение проекции точки А принадлежащей плоскости общего положения заданной двумя параллельными прямыми a(ab).

Задача. Дано: плоскость a(а,в)и проекция точки А2.

Требуетсяпостроить проекцию А1 если известно, что точка А лежит в плоскости в,а.

Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2и b2 в точках С2 и В2 (С,aÎ BaÎ Þ maÎ). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, maÎ Þ АaÎ).

 

  а) модель   б) эпюр
Рисунок 5.23. Точка, принадлежащая плоскости
       

Через точку А2 проведем проекцию прямой m2, пересекающую проекции прямых a2и b2 в точках С2 и В2 (СÎ,aBÞaÎmaÎ). Построив проекции точек С1 и В1, определяющие положение m1, находим горизонтальную проекцию точки А (А1Î m1, m ÞaÎ АaÎ).

 

Взаимное расположение двух плоскостей

Две плоскости в пространстве могут быть либо взаимно параллельны, в частном случае совпадая друг с другом, либо пересекаться. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей.

1. Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Это определение хорошо иллюстрируется задачей, через точку В провести плоскость параллельную плоскости, заданной двумя пересекающимися прямыми ab (рис.5.24).

Задача. Дано: плоскость общего положения, заданную двумя пересекающимися прямыми ab и точка В.

Требуется через точку В провести плоскость, параллельную плоскости ab и задать её двумя пересекающимися прямыми c и d.

Согласно определения если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости то эти плоскости параллельны между собой.

Для того чтобы провести на эпюре параллельные прямые необходимо воспользоваться свойством параллельного проецирования - проекции параллельных прямых - параллельны между собой

d//a, с//b Þ d1a1,с1//b1; d2a2 ,с2//b2; d3a3,с3//b3.

  а) модель   б) эпюр
Рисунок 5.24. Параллельные плоскости
       

2. Пересекающиеся плоскости, частный случай – взаимно перпендикулярные плоскости. Линия пересечения двух плоскостей является прямая, для построения которой достаточно определить две её точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Рассмотрим построение линии пересечения двух плоскостей, когда одна из них проецирующая (рис.5.25).

Задача. Дано: плоскость общего положения задана треугольником АВС, а вторая плоскость - горизонтально проецирующая a.

Требуется построить линию пересечения плоскостей.

Решение задачи заключается в нахождении двух точек общих для данных плоскостей, через которые можно провести прямую линию. Плоскость, заданная треугольником АВС можно представить, как прямые линии (АВ), (АС), (ВС). Точка пересечения прямой (АВ) с плоскостью a - точка D, прямой () -F. Отрезок [DF] определяет линию пересечения плоскостей. Так как a - горизонтально проецирующая плоскость, то проекция D1F1 совпадает со следом плоскости aП1,таким образом остается только построить недостающие проекции [DF] на П2 и П3.

  а) модель   б) эпюр
Рисунок 6.25. Пересечение плоскости общего положения с горизонтально проецирующей плоскостью
       

 

Перейдем к общему случаю. Пусть в пространстве заданы две плоскости общего положения a(n,m) и b (ABC) (рис.5.26).

  а) модель   б) эпюр
Рисунок 5.26. Пересечение плоскостей общего положения
       

 

Рассмотрим последовательность построения линии пересечения плоскостей a(m//n) и b(АВС).По аналогии с предыдущей задачей для нахождения линии пересечения данных плоскостей проведем вспомогательные секущие плоскости g и d. Найдем линии пересечения этих плоскостей с рассматриваемыми плоскостями. Плоскость g пересекает плоскость a по прямой (12), а плоскость b - по прямой (34). Точка К - точка пересечения этих прямых одновременно принадлежит трем плоскостям a, b и g, являясь таким образом точкой принадлежащей линии пересечения плоскостей a и b. Плоскость d пересекает плоскости a и b по прямым (56) и (7C) соответственно, точка их пересечения М расположена одновременно в трех плоскостях a, b, d и принадлежит прямой линии пересечения плоскостей a и b. Таким образом найдены две точки принадлежащие линии пересечения плоскостей a и b - прямая (КМ).

Некоторого упрощения при построении линии пересечения плоскостей можно достичь, если вспомогательные секущие плоскости проводить через прямые, задающие плоскость.

Взаимно перпендикулярные плоскости. Из стереометрии известно, что две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку А можно провести множество плоскостей перпендикулярных данной плоскости a(f,h). Эти плоскости образуют в пространстве пучок плоскостей, осью которого является перпендикуляр опущенный из точки А на плоскость a . Для того чтобы из точки А провести плоскость перпендикулярную плоскости заданной двумя пересекающимися прямыми hf необходимо из точки А провести прямую n перпендикулярную плоскости hf (горизонтальная проекция n перпендикулярна горизонтальной проекции горизонтали h, фронтальная проекция n перпендикулярна фронтальной проекции фронтали f). Любая плоскость проходящая через прямую n будет перпендикулярна плоскости hf, поэтому для задания плоскости через точки А проводим произвольную прямую m. Плоскость заданная двумя пересекающимися прямыми mn будет перпендикулярна плоскости hf (рис.5.27).

а) модель   б) эпюр
Рисунок 5.27. Взаимно перпендикулярные плоскости

 

– Конец работы –

Используемые теги: Лекция, точка, ортогональной, системе, двух, плоскостей, проекций0.11

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция №2-1 Точка в ортогональной системе двух плоскостей проекций

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Лекция 1. Тема: Операционная система. Определение. Уровни операционной системы. Функции операционных систем. 1. Понятие операционной системы
Понятие операционной системы... Причиной появления операционных систем была необходимость создания удобных в... Операционная система ОС это программное обеспечение которое реализует связь между прикладными программами и...

Лекции 1.ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ. 2 ЛЕКЦИИ 2. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ. СИСТЕМЫ СЧИСЛЕНИЯ. 12 ЛЕКЦИЯ 3. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЭВМ. 20 ЛЕКЦИЯ 4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРОВ.. 49 Широко распространён также англоязычный вар
gl ОГЛАВЛЕНИЕ... Лекции ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ... ЛЕКЦИИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ СИСТЕМЫ СЧИСЛЕНИЯ...

Лекция: Архитектура компьютерной системы В лекции подробно рассмотрена архитектура компьютерной системы: управление прерываниями
В лекции подробно рассмотрена архитектура компьютерной системы управление прерываниями памятью вводом выводом иерархия памяти ассоциативная... Содержание Введение Архитектура компьютерной системы... Введение...

Учебная программа курса. 4. Лекция 1. История психологии как наука. 5. Лекция 2. Античная философия и психология. 6. Лекция 3. Развитие психологии в Средневековый период. 19. Лекция 16. Тревога и защита
Введение... Учебная программа курса... Рабочая программа курса Лекция История психологии как наука...

Лекция первая. ИСТОРИЯ СОЦИОЛОГИИ КАК ОБЛАСТЬ ЗНАНИЯ Лекция вторая. ИЗ КАКИХ ИДЕЙ РОДИЛАСЬ СОЦИОЛОГИЯ: ИНТЕЛЛЕКТУАЛЬНЫЕ ИСТОКИ НОВОЙ НАУКИ Лекция третья. СОЦИОЛОГИЯ ОГЮСТА КОНТА ЛЕКЦИИ
Оглавление... ОТ АВТОРА... Лекция первая ИСТОРИЯ СОЦИОЛОГИИ КАК ОБЛАСТЬ ЗНАНИЯ Лекция вторая ИЗ КАКИХ ИДЕЙ РОДИЛАСЬ СОЦИОЛОГИЯ ИНТЕЛЛЕКТУАЛЬНЫЕ ИСТОКИ НОВОЙ НАУКИ...

ЛЕКЦИЯ № 1. Факторы выживания в природной среде ЛЕКЦИЯ № 2. Обеспечение водой ЛЕКЦИЯ № 3. Обеспечение питанием ЛЕКЦИИ по ОБЖ
КЛАСС Содержание Стр I четверть ЛЕКЦИЯ Факторы выживания в природной среде ЛЕКЦИЯ... ЛЕКЦИЯ Факторы выживания в природной... ЛЕКЦИЯ Обеспечение питанием...

Лекции по дисциплине Устройство и функционирование информационных систем Раздел 1. Информационные системы. Основные понятия и классификация
Раздел Информационные системы Основные понятия и классификация... Тема Информационные системы Основные понятия и... В данной теме рассматриваются общие понятия относящиеся к операционным системам определяются их типы и базовые...

Лекция 6 - два отказа в двух разрядах система всегда выдает нули единицы
Коррекция двойных ошибок памяти с помощью Н матрицы и метода двойного инвертирования... Используя Н матрицу и метод двойного инвертирования возможно устранение... два отказа в двух разрядах система всегда выдает нули единицы...

Модуль 1. Системное обеспечение информационных процессов. Лекция №2. Файловые менеджеры. Программы для обслуживания и настройки компьютера. План лекции. Работа с файловой системой при помощи Проводника. Альтернативные файловые менеджеры Total Commander
Лекция Файловые менеджеры Программы для обслуживания и настройки компьютера... План лекции... Работа с файловой системой при помощи Проводника Альтернативные файловые менеджеры Total Commander Far...

0.039
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам