Матричные игры с нулевой суммой

 

Рассмотрим парную игру с нулевой суммой. Пусть игрок I имеет стратегий (1, 2,…,m), а игрок II - стратегий 1, 2,…, n). Такая игра называется матричной игрой размерности .

Предположим, игрок I выбрал одну из своих возможных стратегий (), а игрок II, не зная результата выбора игрока I, - стратегию ( ). Выигрыши игрока I и игрока II в результате выбора стратегий удовлетворяют соотношению ; таким образом, если ввести обозначение , то .

Элементы для каждой пары стратегий считаются известными и записываются в платежную матрицу (табл. 4.1), строки которой соответствуют стратегиям игрока I, а столбцы - стратегиям игрока II. Каждый положительный элемент матрицы определяет величину выигрыша игрока I и, соответственно, проигрыша игрока II при применении ими соответствующих стратегий. Естественно, целью игрока I является максимизация своего выигрыша, тогда как игрока II - минимизация своего проигрыша.

 

Таблица 4.1Платежная матрица парной игры с нулевой суммой

II I n
m

Решение парных матричных игр с нулевой суммой. Принцип минимакса

Используя платежную матрицу парной игры с нулевой суммой (табл. 4.1), определим наилучшую стратегию игрока I среди стратегий i ( i = ) и наилучшую стратегию игрока II среди стратегий j (j=).

В теории игр предполагается, что противники, участвующие в игре, одинаково разумны, и каждый из них делает все возможное для того достижения своей цели.

Проанализируем стратегии игрока I. Игрок I, выбирая стратегию , должен рассчитывать, что игрок II ответит на нее той из своих стратегий , для которой выигрыш игрока I будет минимальным. Найдем минимальное число в каждой строке матрицы и, обозначив его , запишем в добавочный столбец платежной матрицы (см. табл. 4.2):

 

. (4.1)

 

Зная числа (свои выигрыши при применении i-х стратегий и разумном ответе игрока II), игрок I должен выбрать такую стратегию, для которой максимально. Обозначив это максимальное значение как

 

(т.е. и используя (4.1), получим

 

(4.2)

 


Таблица 4.2

II I . . . n
. . .
. . .
. . . . . . . . . . . . . . . . . .
m . . .
. . .  

 

Величина представляет собой гарантированный выигрыш, который может обеспечить себе игрок I; она называется нижней ценой игры (максимином). Стратегия, обеспечивающая получение нижней цены игры , называется максиминной стратегией. Если игрок I будет придерживаться своей максиминной (перестраховочной) стратегии, то ему гарантирован выигрыш, не меньший при любом поведении игрока II.

В свою очередь, второй игрок стремится уменьшить свой проигрыш или, что то же самое, выигрыш игрока I обратить в минимум. В связи с этим, для выбора своей наилучшей стратегии он должен найти максимальное значение выигрыша игрока I в каждом из столбцов и среди этих значений выбрать наименьшее. Обозначим через максимальный элемент в каждом столбце и запишем эти элементы в дополнительной строке табл. 4.2. Наименьшее значение среди обозначим через ; эта величина представляет собой верхнюю цену игры (минимакс), которая определяется по формуле

 

. (4.3)

 

Стратегия игрока II, обеспечивающая «выигрыш» , является его минимаксной стратегией. Выбор минимаксной стратегии игроком II гарантирует ему проигрыш не больше .

В теории игр доказывается, что для нижней и верхней цены игры всегда справедливо неравенство

 

 

Игры, для которых нижняя цена равна верхней, т.е. , называются играми с седловой точкой.

Общее значение нижней и верхней цены игры в играх с седловой точкой называется чистой ценой игры , а стратегии , позволяющие достичь этого значения, - оптимальными чистыми стратегиями; элемент = является одновременно минимальным в i-й строке и максимальным в j-м столбце. Оптимальные стратегии определяют в игре положение равновесия, поскольку каждому из игроков невыгодно отходить от своей оптимальной стратегии. Чистую цену игры в игре с седловой точкой игрок I не может увеличить, а игрок II ‑ уменьшить. Если игра имеет седловую точку, то говорят, что она решается в чистых стратегиях.

Игры без седловых точек

 

Итак, если матрица игры содержит седловую точку, то ее решение находится по принципу минимакса. Рассмотрим методику решения игры, в платежной матрице которой отсутствует седловая точка. Применение минимаксных стратегий каждым из игроков обеспечивает первому выигрыш не меньше , а второму проигрыш не больше. Учитывая, что <, естественно для игрока I желание увеличить выигрыш, а для игрока II - уменьшить проигрыш. Поиск такого решения приводит к применению сложной стратегии, состоящей в случайном применении двух и более чистых стратегий с определенными вероятностями. Такая сложная стратегия в теории игр называется смешанной. Смешанные стратегии игроков I и II будем обозначать, соответственно,

 

и

 

где , ‑ вероятности применения соответствующих чистых стратегий. Очевидно, должны выполняться условия нормировки для вероятностей

 

 

Одна из основных теорем теории игр утверждает, что любая конечная игра двух лиц с нулевой суммой имеет, по крайней мере, одно решение, возможно, в смешанных стратегиях. Из этой теоремы следует, что каждая конечная игра имеет цену. Обозначим ее так же, как чистую цену игры, через . Цена игры - средний выигрыш, приходящийся на одну партию, - всегда удовлетворяет условию , т.е. лежит между нижней () и верхней () ценами игры. Следовательно, каждый игрок при многократном повторении игры, придерживаясь смешанных стратегий, получает более выгодный для себя результат. Оптимальное решение игры в смешанных стратегиях, так же как и решение в чистых стратегиях, характеризуется тем, что каждый из игроков не заинтересован в отходе от своей оптимальной смешанной стратегии, если его противник применяет оптимальную смешанную стратегию, так как это ему невыгодно.

Стратегии игроков, входящие в их оптимальные смешанные стратегии, называются активными.