рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Статистические модели при изучении планиметрии

Работа сделанна в 2007 году

Статистические модели при изучении планиметрии - раздел Педагогика, - 2007 год - Методика обучения школьников планиметрии с использованием объектных моделей Статистические Модели При Изучении Планиметрии. Плоскостные Модели К Ним Отно...

Статистические модели при изучении планиметрии. Плоскостные модели К ним относят модели отрезков, углов, параллельных прямых, треугольники, изготовленные из картона, бумаги, из проволоки, из деревянных планок.

Особенностью таких моделей состоит в том, что они имеют постоянную форму. Рассмотрим, как можно использовать такие модели на уроке.

На уроке измерения длин отрезков. Можно предложить такие модели: два отрезков изготовленных из бумаги. Длину одного из них обозначить за единицу и предложить ребятам измерить длину второго. Сколько раз единичный отрезок и его части укладываются в отрезке, такую длину будет иметь данный отрезок. Часто такие модели используют при изучении равенства фигур. Например, модели треугольников, имеющих по 2 соответственно равные стороны, позволяют отчетливо и в короткий срок на классной доске осуществить фактическое наложение одного треугольника на другой и показать возможные случаи расположения основных элементов обоих треугольников, что в значительной мере поможет учащимся понять доказательство теоремы.

Такие модели помогают представить расположение фигур относительно друг друга. Например, на уроках взаимное расположение двух окружностей, прямой и окружности. Нам понадобятся 3 модели: двух окружностей и модель прямой (полоска, вырезанная из бумаги), лучше, если эти фигуры будут разного цвета.

Зададим вопрос: «Как могут располагаться две окружности. Учащиеся отвечают: «Они могут пересекаться». Учитель на моделях показывает пересечение (наложение двух фигур друг на друга) и так далее, аналогично и расположение прямой и окружности. 2.1.2 Пространственные модели Геометрические понятия формируются в процессе наблюдения форм, размеров и взаимного расположения окружающих предметов.

С другой стороны, в поисках практических приложений планиметрических знаний мы вынуждены рассматривать пространственные ситуации и выделять в них плоские объекты, на которых действуют изученные нами закономерности. Эти два обстоятельства объясняют необходимость пространственной точки зрения при изучении планиметрии. Говоря о геометрических телах на первом уроке геометрии необходимо указать геометрические тела, которые будут изучаться в курсе математики – это куб, параллелепипед, призма, пирамида, усеченная пирамида, шар, цилиндр, конус, усеченный конус.

Можно сообщить здесь и названия, не давая определений; предварительно полезно убедиться, какие термины известны, какие, не известны детям. Также в беседе с учащимися устанавливаются особенности этих форм, их отличительные признаки [7]. Можно рассмотреть классификацию моделей мотивируя, следующим примером. Первого сентября собрались все учащиеся нашей школы, все перепутались – семиклассники рядом со старшеклассниками и тому подобное.

Ставится вопрос: «С чего начнет руководство школы?» Ответ: «Распределить всех по классам». «А почему?» Ответ: «Так как все ученики одного класса одинокого подготовлены. «Вот так разбиваются все тела на классы, на группы, чтобы найти законы и свойства не отдельного тела, а всего семейства тел данной группы, данного класса». После этого тела расставляются на столе в некотором порядке. В беседе подводятся итоги наблюдений и устанавливаются черты сходства и различия, устанавливается общее и частное.

На моделях этих тел желательно, чтобы ученики показали поверхности кривые и плоские, линии прямые, кривые и ломаные, точки. Здесь же попутно напомнить термины «грань», «ребро», «вершина». Можно выполнить серии упражнений на подсчет числа граней, вершин, ребер у куба, пирамиды и т. д. Интересно сопоставить число граней, вершин, ребер куба и прямоугольного, прямого наклонного параллелепипедов (термины не сообщаются). Поможет сделать правильный вывод модель куба, у которой вертикальные ребра сделаны из резинок.

В руках учителя модель трансформируется из куба в прямоугольный, затем в наклонный параллелепипед. Познакомившись с понятиями плоской и пространственной фигур, намечаем мелом на моделях геометрических тел различные плоские и пространственные фигуры (на кубе, на цилиндре, на шаре и др.). Полезно модели этих фигур изготовить из проволоки: окружность и спираль (кривые на цилиндре), квадрат и пространственная ломаная линия из ребер куба и т. п. Введя понятие равных и неравных отрезков, исследуем, какие отрезки равны и какие не равны у куба, параллелепипеда, призмы, пирамиды.

Вместе с кубом можно рассмотреть прямой параллелепипед, в основании у которого лежит ромб и высота равна стороне основания, и тетраэдр. Выясняется, что не только у куба все ребра равны [7]. При введении понятий «окружность», «круг» сопоставляем плоские кривые замкнутые линии и пространственные (на шаре и цилиндре). Здесь доступны для школьников вопросы типа: «В чем сходство и различие между плоскими и пространственными замкнутыми кривыми на шаре?». Доступен пониманию учащихся показ кругов и окружностей на сечениях шара, цилиндра и конуса.

Сечение можно показать наглядно, разрезав яблоко ножом; сечения различной формы получим, налив в стакан цилиндрической формы воду и постепенно наклоняя его. Показав сечение цилиндра в форме эллипса, учитель обращает внимание учащихся, что эту фигуру мы чертим, изображая на плоскости чертежа основание цилиндра или конуса.

Дело в том, что если круг наблюдать под разными углами зрения (показывает), то он меняет свою форму от «круглой» до «приплюснутой». Это можно использовать на уроке изучения фигуры эллипса. При изучении темы ломанные и многоугольники необходимо обратить внимание учащихся, что, пересекая плоскостью конус и цилиндр, можем получить в сечении не только кривые линии, но и ломаные. Демонстрируем соответствующие каркасные или стеклянные модели с выделенными на них сечениями.

Понятие «многоугольник» хорошо иллюстрируется на многогранниках. Например, рассматривая пирамиды различных видов, ученики делают вывод, что основание этих тел может являться треугольником, четырехугольником, пятиугольником и т. д. (отсюда соответственно и названия: треугольная, четырехугольная, пятиугольная пирамиды). Зато боковые грани пирамид всегда имеют форму треугольников[7]. Познакомившись с понятием угла (образованного лучами и образованного отрезками), рассматриваем различные углы на моделях геометрических тел, подсчитываем, сколько углов сходится в вершинах этих тел, находим на моделях тупые, прямые и острые углы. Виды треугольников также хорошо иллюстрируются на пирамидах и треугольных призмах.

Приложение понятий «равнобедренный треугольник», «равные стороны», «равные углы» к изучению особенностей правильных в неправильных пирамид позволяет моделировать своеобразный естественнонаучный метод исследования. Напомним, что ученикам неизвестны определения правильных и неправильных пирамид.

Эти названия учитель сообщил им методом показа: «Вот эта группа тел - правильные пирамиды, а вот эта неправильные» Уже в процессе измерения размеров пирамиды и определения формы их граней ученики находят общие признаки пирамид: в основании лежит многоугольник, боковые грани - треугольники, сходящиеся в одной общей вершине. Затем находятся признаки, которые отличают правильную пирамиду от неправильной. Имея достаточный набор пирамид (по одной паре на парту), можно организовать наблюдения (и запись в тетрадях) по следующей форме (см. таблицу 1): Таблица 1 Форма для записи наблюдений [38] № Пирамида Форма боковых граней Форма основания Размер сторон основания Углы основания 1 2 3 4 5 6 1 Правильная Остроугольные равнобедренные треугольники Пятиугольник Все стороны по 10 см. Равные тупые углы 2 Правильная Тупоугольные равнобедренные треугольники Четырехугольник (квадрат) Все стороны равны по 12 см. Равные прямые углы Неправильная Разносторонние треугольники (есть остроугольный, 2 прямоугольных и 2 тупоугольных Пятиугольник Все стороны равны по 10 см. Углы разные Конечно, сводить результаты наблюдений в одну таблицу нет необходимости.

Коллективное подведение итогов может быть организовано так. По вызову учителя ученики сообщают классу о результатах своих измерений (сначала в отношении правильных пирамид, затем неправильных). После нескольких ответов учитель спрашивает, каковы общие черты одноименных пирамид.

Опрос продолжается.

Еще после 2 - 3 ответов ребята делают вывод: правильные пирамиды обладают следующими общими свойствами: у них боковые грани одинаковые равнобедренные треугольники, а в основании лежит многоугольник с равными сторонами и равными углами. «Подтверждается ли это наблюдение для остальных правильных пирамид?» спрашивает учитель у тех, кто еще не был опрошен. «У кого правильная пирамида не обладает такими признаками?» (В «спорных» случаях измерение повторяется вновь). Рассматриваем точно так же результаты измерений неправильных пирамид (во избежание недоразумений правильные и неправильные пирамиды должны отличаться цветом). Выясняется, что равнобедренная форма граней, равенство сторон основания и равенство углов основания также могут наблюдаться у неправильных пирамид. (Правда, не одновременно), но эти признаки не являются обязательными для каждой такой пирамиды [38]. При изучении темы «Треугольники» можно рассматривать сечения треугольной формы куба, параллелепипеда и вообще призм.

Для удобства проведения измерений лучше брать каркасные модели.

При этом, кроме иллюстраций планиметрических понятий и опознания планиметрических объектов на стереометрических моделях, они могут быть использованы как своеобразные объемные чертежи к планиметрическим задачам. В самом деле, любой чертеж, помещенный в задачнике, можно показать в виде соответствующей грани или разреза стереометрической модели. Особый интерес представляет рассмотрение двух или трех плоскостных объектов, которые не находятся на одной плоскости.

Например, ученикам предлагается доказать, что основания треугольной призмы представляют собой равные треугольники. (Какие элементы оснований необходимо для этого сравнить? Какие возможны при этом варианты?). Возможен и обратный ход мысли: создание пространственной ситуации после рассмотрения планиметрической задачи. Например, после решения задачи: в треугольнике АDС (рис. 2) . Что можно доказать? Выясняется, что равенство сторон АС и АD, а также отрезков СВ и ВD можно доказать и в случае, если и лежат в разных плоскостях (треугольник АСD сгибаем по линии AB). И наоборот, вращая некоторые грани пространственной модели, превращаем пространственную задачу в плоскую.

Рисунок 3, изображающий 2 треугольника АВС и АСD, причем АВ=7 см, мог быть получен из двух граней пирамиды АВСD путем вращения боковой грани АСВ вокруг ребра АС. Другие 2 грани, не участвующие в задаче, можно на чертеже не показывать [38]. При изучении параллелограммов учитель демонстрирует параллелепипед и задает вопросы: «Являются ли параллелограммами грани модели параллелепипеда?», «Как показать, что противоположные ребра параллелепипеда, лежащие на одной грани, параллельны?» т. д. При изучении темы «Частные виды параллелограмма» (прямоугольник, ромб, квадрат) учитель на этих уроках демонстрирует объемные наглядные пособия, на которых ученики наблюдают эти фигуры на телах и их сечениях.

Путем измерений выясняется, чем куб отличается от прямоугольного параллелепипеда, а этот последний - от прямого и наклонного параллелепипедов. Изучение понятия «трапеция» можно провести при помощи усеченной пирамиды, а также рассматривая трапециевидные сечения стереометрических тел. Задание доказать, что какое-то сечение или грань усеченной пирамиды имеют форму трапеции, приводит учеников к необходимости найти признак трапеции.

Весьма удобны на стереометрических моделях практические работы, связанные с непосредственным измерением элементов плоской фигуры, например вычисление площади у трапеции [38]. Модель пирамиды с сечением, параллельным ее основанию, прекрасное пособие для изучения пропорциональных отрезков и подобных треугольников.

Точно так же тригонометрические функции острого угла можно рассматривать не только для прямоугольных треугольников, начерченных на доске, но и являющихся гранями или сечениями трехмерных тел. Очевидно, описанный здесь наглядно-интуитивный выход в пространство при изучении курса планиметрии может сопровождаться также обобщением некоторых вводимых понятий. На это уйдет не очень много времени.

Выше уже было рассказано о введении не только плоских, но и пространственных ломаных линий. При изучении перпендикуляра к прямой находим взаимно перпендикулярные ребра на моделях куба и прямоугольного параллелепипеда. Рассматривая модель перпендикуляра к прямой, убеждаемся в единственности перпендикуляра к данной прямой, проходящего через данную на ней точку, если речь идет о плоскости и о бесчисленном множестве перпендикуляров к данной прямой, если речь идет о пространстве [38]. Изучение параллельных прямых лучше начать с анализа возможного расположения прямых в пространстве.

Так вводятся параллельные и скрещивающиеся прямые; два вида прямых, не имеющих общих точек. Из наблюдений обнаруживается тот факт, что теорема две прямые, параллельные третьей прямой, параллельны друг к другу справедлива и для пространственного расположения прямых (оговариваемся, что доказано это будет в свое время). При доказательстве теоремы: если две прямые АВ и CD перпендикулярны к одной и той же прямой МN, то они параллельны.

На каркасной модели куба показываем, что это предложение верно только для прямых, лежащих в одной плоскости. Далее вместе с понятием плоского четырехугольника вводится понятие пространственного четырехугольника. Доказывается теорема: сумма внутренних углов четырехугольника равна 1800. Эта теорема верна для плоских четырехугольников. А для пространственных? Наблюдение покажет, что нет. Неплоские четырехугольники можно наблюдать на каркасных моделях параллелепипеда, соединяя четыре вершины, не лежащие на одной плоскости.

Или с помощью четырех палочек и пластилина демонстрируются подвижные пространственные четырехугольники, в которых, сохраняя значение двух углов, можно уменьшать два других угла, что опровергает возможность обобщении теоремы о сумме внутренних углов четырехугольника [38]. Итак, используя стереометрические модели и их разрезы для изучения элементов планиметрии, мы достигаем сразу нескольких целей, главными из которых являются:[38]. 1) обеспечение всестороннего, более глубокого понимания планиметрических зависимостей; 2) развитие пространственны представлений учащихся при изучении планиметрии; 3) применение знаний по планиметрии при решении пространственных задач, т. е сближение обучения с возможными приложениями в жизни; 4) приложение измерительных и конструктивных навыков к естественнонаучным методам изучения особенностей пространственных фигур; 5) подготовка к изучению систематического курса стереометрии.

Можно привести еще целый ряд примеров весьма эффективного использования геометрических моделей постоянной формы.

Однако такие модели в настоящее время не могут полностью удовлетворять современным требованиям методики преподавания геометрии, когда идея движения и связанные с нею геометрические преобразования прочно входят в курс элементарной геометрии. Возникает необходимость при изучении геометрии вводить подвижные наглядные пособия, окружающие идею движения в геометрии. 2.2

– Конец работы –

Эта тема принадлежит разделу:

Методика обучения школьников планиметрии с использованием объектных моделей

Однако опыт работы учителей математики показывает, что качество геометрических знаний и умений учащихся основной школы остается невысоким. Это объясняется тем, что геометрия по сравнению с другими дисциплинами… И поэтому существует проблема: как в таких условиях обеспечить высокий уровень знаний учащихся.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Статистические модели при изучении планиметрии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие наглядности и ее роль в процессе обучения математике
Понятие наглядности и ее роль в процессе обучения математике. К понятию наглядности в процессе обучения обращались известные ученые, психологи, специалисты в области теории и методики обучения мате

Объектные модели как наглядность обучении геометрии
Объектные модели как наглядность обучении геометрии. Изучить форму тела, изображать тело на плоскости, на доске, на бумаге, научиться анализировать, рассуждать, доказывать, развивать пространственн

Классификация моделей
Классификация моделей. В преподавании достаточно широко используются планиметрические модели, стереометрические модели (каркасные, стеклянные, деревянные, картонные), стереометрический набор, триго

МЕТОДИЧЕСКИЕ АСПЕКТЫ ИСПОЛЬЗОВАНИЯ ОБЪЕКТНЫХ МОДЕЛЕЙ ПРИ ИЗУЧЕНИИ ПЛАНИМЕТРИИ
МЕТОДИЧЕСКИЕ АСПЕКТЫ ИСПОЛЬЗОВАНИЯ ОБЪЕКТНЫХ МОДЕЛЕЙ ПРИ ИЗУЧЕНИИ ПЛАНИМЕТРИИ. При изучении курса геометрии могут и должны применятся объектные модели. Одни из этих пособий могут создаваться на сам

Геометрический конструктор
Геометрический конструктор. Он состоит из набора целого ряда отдельных деталей: шарнирных палочек, шпилек, картонных моделей замкнутых фигур, из которых на уроке собирается и составляется ну

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги