рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Формирование знаний о реакциях ионного обмена

Работа сделанна в 2006 году

Формирование знаний о реакциях ионного обмена - Курсовая Работа, раздел Педагогика, - 2006 год - МЕТОДИЧЕСКИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ ЗНАНИЙ О ХИМИЧЕСКИХ РЕАКЦИЯХ Формирование Знаний О Реакциях Ионного Обмена. Изучение Теории Электролитичес...

Формирование знаний о реакциях ионного обмена. Изучение теории электролитической диссоциации позволяет углубить и расширить знания о реакции, дифференцировать особенности протекания обменных и окислительно-восстановительных реакций. Учащиеся приобретают умения составлять ионные и ионно-электронные уравнения реакций, распознавать реакции обмена электролитов.

Особое внимание уделяется на проблемное изучение этих реакций, механизмов и закономерностей их протекания. В центре изучения реакций электролитов – обменные реакции. Реакции ионного обмена являются еще боле абстрактными по сравнению с привычными молекулярными. Вследствие этого путь их познания должен быть следующим: краткое ионное уравнение, полное ионное уравнение – уравнение в молекулярной форме – опыт. Рассмотрим, например, методы формирования знаний о реакциях ионного обмена в свете теории о кислотно- основных взаимодействиях [7]. Большинство реакций ионного обмена в водных растворах могут быть рассмотрены в свете представлений о кислотно-основных взаимодействиях.

С позиции протолитической теории кислоты представляют собой частицы (ионы, молекулы), способные отдавать протон (доноры протонов), а основания – частицы, способные присоединять протон (акцепторы протонов). Например, уксусная кислота СН3СООН в водном растворе отдает протоны основанию, роль которого выполняет молекула воды. При этом образуются ионы гидрозония Н3О+ и новое основание СН3СОО В такой системе слабой кислоте соответствует сильное основание СН3СОО Они называются соответственно сопряженными кислотой и основанием.

В сопряженной системе сильной кислоте соответствует слабое основание, и наоборот, слабой кислоте – сильное основание. В таких системах различные ионы всегда конкурируют между собой в связывании протона, например в системе: NO2- + HSO4- =HNO2 + SO42 Конкурируют ионы NO2- и SO42 Нитрит ионы сильнее связывают протоны, так как HNO2 более слабая кислота, чем HSO4 Для обучения школьников умению анализировать ход реакций необходимо применять наиболее понятные им эмпирические правила: 1. Реакции обмена в водных растворах протекают в направлении образования слабого электролита, нерастворимого или малорастворимого вещества, газообразного продукта. 2. Сильные кислоты вытесняют слабые из растворов из растворов солей.

Более тяжелые и менее летучие кислоты вытесняют из растворов солей менее тяжелые и более летучие.

Равновесие в этих случаях смещено в сторону образования боле слабой или более летучей кислоты. 3. Сильные основания вытесняют из растворов солей более слабые основания. 4. Сильные электролиты в разбавленных растворах имеют практически одинаковую степень диссоциации и диссоциируют необратимо. Средние и слабые отличаются степенью диссоциации и диссоциируют обратимо. Реакции ионного обмена в водных средах, по сути, обратимы.

Необходимое условие необратимости – удаление хотя бы одного из продуктов реакции. В случае, когда в состав исходных веществ и продуктов реакции входят слабые электролиты, реакции обмена всегда обратимы и можно говорить лишь о смещении равновесия в сторону более слабого электролита. Для эффективности закрепления правил при анализе ионных уравнений можно предложить учащимся использовать таблицы содержащие ряды кислот, расположенных в порядке убывания значений констант диссоциации (см. приложение). Сильные кислоты показаны как электролиты примерно одинаковой силы. Данная таблица применяется вместе с выполнением соответствующих упражнений. Можно условно принять, что равновесие реакций, в которых исходная и образующаяся кислоты отличаются по константам ионизации хотя бы на один порядок, практически смещено в сторону более слабого электролита.

При решении задач можно также использовать вытеснительную таблицу кислот (см. приложение), в которой формулы кислот в строке и столбце расположены в порядке убывания константы диссоциации.

Направление стрелки на пересечении строки и столбца указывает на вытесняемую кислоту или на смещение равновесия в сторону соответствующей кислоты. Двойные стрелки указывают на установление равновесия при приблизительно равных концентрациях кислот. Предлагаемая таблица может быть также частью комплекта справочных материалов на контрольных работах и экзаменах. 2.4 Формирование знаний о кинетике химических реакций Вопросы кинетики химических процессов и химическое равновесие являются самыми сложными не только для учеников, но и для учителей. При изучении этого материла достаточно выгодной и перспективной является методика, основанная на собственной познавательной активности учащихся [1]. По данной методике учитель не объясняет новый материал, а организует познавательную деятельность учащихся, которые наблюдают опты, ведут расчеты, моделируют, находят ответы на вопросы, поставленные учителем, осмысливают результаты собственной деятельности.

Правильно организованная познавательная деятельность приводит школьников к определенным выводам, самостоятельному созиданию знаний.

Весь учебный материал разбит на 6 уроков: 1. Скорость химической реакции. 2. зависимость скорости химической реакции от внешних факторов. 3. Влияние температуры на скорость химической реакции. 4. Катализ. 5-6. Химическое равновесие и его смещение. Итак, рассмотрим подробнее каждый этап формирования знаний по данной теме. Урок 1. Скорость химической реакции Обсуждение нового материала начинается с демонстрации следующего эксперимента: взаимодействие соляной кислоты с магнием и железом.

Учащиеся видят, что эти две реакции протекают по разному: с железом реакция идет гораздо медленнее, чем с магнием. Таким образом, учитель подводит учащихся к выводу, что химические реакции могут быть охарактеризованы определенными скоростями. Прежде чем учащиеся придут к пониманию скорости химической реакции, необходимо обсудить общее «понятие скорость». Для этого учащимся задают вопросы: • Что собой представляет механическое движение? (Это длина пути, проделанного физическим телом за единицу времени). • Что изменяется во времени при прокручивании кинопленки? (Изменяется число прокрученных кадров). Каждый раз учитель подчеркивает, что скорость какого-либо процесса – это изменение какой-либо величины за единицу времени.

Теперь нужно найти величину, которая изменяется во времени с течением химической реакции.

Учитель напоминает, что химическая реакция осуществляется при столкновении частиц. Понятно, что чем чаще происходят эти столкновения, тем скорость реакции будет выше. Исходя из этого, учащимся предлагается сформулировать определение скорости химической реакции. Выслушивая предположения, учитель подводит учеников к более точному определению: скорость химической реакции – это число столкновений или число элементарных актов реакции в единицу времени.

Но число столкновений подсчитать невозможно, поэтому необходимо найти другую величину, которая также изменяется во времени при протекании химической реакции. Исходные вещества превращаются в продукты реакции, а значит, изменяется количество вещества. Изменение любой величины находят как разность между начальным и конечным значениями и обозначают греческой буквой Δ (дельта). Так как начальное количество исходного вещества больше конечного, то: Δ n = n1 – n2. Чтобы измерить скорости реакции надо вычислить, как изменяется количество вещества за единицу времени: W = Если реакция происходит в растворе или газовой среде, то при сравнении скоростей различных реакций нужно учитывать не просто количество вещества, а количество вещества в единице объема, то есть молярную концентрацию, которую вычисляют по формуле: С = и измеряют в моль/л. Итак, скорость реакции в растворе – это изменение концентрации вещества в единицу времени: ∆С = С1 – С2; W = Снова начинается обсуждение вопроса об измерении скорости по изменению концентрации продуктов реакции и выведение формулы скорости для такого случая.

При выведении данной формулы оказывается, что она идентична предыдущей.

Затем учащиеся выводят из формулы единицы измерения скорости химической реакции: [W] = Учитель делает общий вывод: скорость реакции – это изменение количества или концентрации исходных веществ или продуктов реакции в единицу времени. Далее учитель обучает учащихся вычислению скорости в опыте: к 10 мл. 0,1М раствора соляной кислоты добавляют такой же объем 0,1М раствора тиосульфата натрия.

Отсчитываем по метроному или секундомеру время от начала сливания растворов до окончания реакции (помутнения), скорость получается равной около 7с. Определить скорость можно по концентрации одного из исходных веществ, причем конечную реакцию следует считать равной 0. Тогда получим: W = . Затем обсуждается вопрос: сохраняется ли скорость реакции неизменной в течение всего химического процесса или изменяется? Чтобы учащиеся пришли к правильному выводу, учитель задает наводящие вопросы: • Изменяется ли количество исходных веществ в ходе реакции? • Как изменяется число столкновений частиц при уменьшении концентрации? Школьники делают вывод, что скорость химической реакции со временем уменьшается.

Для подтверждения этого факта учащимся предлагают следующее задание: для реакции, протекающей в соответствии с уравнением C4H9OH + HCl = C4H9Cl + HOH Экспериментально определена концентрация одного из веществ в разные промежутки времени. t, c 0 79 158 316 632 C,моль/л 1,67 1,52 1,30 1,00 Как изменится скорость этой реакции со временем? Учащиеся высчитывают скорость химической реакции в первом промежутке времени, затем во втором и так далее: W 1 = = 0,0023 моль/л • с W 2 = = 0,0019 моль/л • с W 3 = = 0,0014 моль/л • с W 4 = = 0,0009моль/л • с Рис 3. Зависимость скорости реакции от времени.

По рассчитанным значениям скорости строят график зависимости скорости реакции от времени.

Использование столь малых величин вызывает затруднение у учащихся, поэтому скорость для удобства построения умножают на 103. Важно обратить внимание учащихся на то, что скорости являются усредненными, а для более точных расчетов необходимо сокращение временного интервала. Точки в связи с этим ставятся в середине отрезков времени. Анализируя график. Учитель еще раз формулирует главный вывод урока: с течением времени скорость химической реакции уменьшается. Урок 2. Зависимость скорости химической реакции от внешних факторов В начале урока идет проверка домашнего задания подобного тому, что решали на предыдущем уроке.

Параллельно этому обсуждается, почему с течением времени скорость химической реакции уменьшается (уменьшается количество исходных веществ, а если реакция идет в растворе, то их концентрации). Уменьшение количества исходных веществ ведет к тому, что частицы реже сталкиваются друг с другом, поэтому и уменьшается скорость химической реакции.

Получается, что скорость химической реакции зависит от концентрации исходных веществ. Данный вывод необходимо подтвердить экспериментально: рассмотрим реакцию взаимодействия растворов тиосульфата натрия разных концентраций и соляной кислоты (0,1М). Заранее приготовленный раствор 0,1М тиосульфата натрия разбавляем: в первом стакане 2,5 мл. раствора Na2S2O3 + 5 мл. воды; во втором 5 мл. раствора Na2S2O3 + 2,5 мл. воды; в третий наливаем 7,5 мл. неразбавленного раствора Na2S2O3. При проведении опыта один из учеников ассистирует учителю. Метроном запускают одновременно с приливанием в каждый стаканчик 2,5 мл. соляной кислоты.

Момент сливания растворов считают нулевым, далее отсчитывают время от начала реакции до помутнения. Ассистент записывает на доске время протекания реакции в каждом стаканчике. 1-й стакан – 23с. 2-й стакан – 15с. 3-й стакан – 7с. По изменению концентрации соляной кислоты вычисляем скорости реакции и чертим график: W 1 = 0,043моль/л • с W 2 = 0,067моль/л • с W 4 = 0,143моль/л • с Рис. 4. Зависимость скорости реакции от концентрации.

Вычерчивание графика отнимает время, но зато дает незаменимые навыки научного исследования, а значит, развивает мышление учащихся. Таким образом, учащиеся, анализируя график, делают вывод, что скорость химической реакции зависит от концентрации реагирующих веществ. После этого учитель задает вопрос: будет ли влиять на скорость реакции газообразных и твердых веществ концентрация? Концентрация газа пропорциональна давлению, поэтому изменение давления (а значит и концентрации) изменяет скорость реакции.

Твердые вещества под эту зависимость не попадают, так как давление на них существенного влияния не оказывает (за исключением очень больших). Таким образом, учащиеся начинают осознавать, что скоростью химических процессов можно управлять. Учитель должен сделать акцент на то, что это особенно важно для химических производств (наиболее рентабельны те производства, в основе которых лежат реакции протекающие наиболее быстро). В то же время некоторые реакции нежелательны и их скорость необходимо замедлить (например, процессы коррозии металлов). Поэтому так важно знать от чего зависит скорость химической реакции.

Далее обсуждается, как влияет природа вещества (его состав, вид, прочность связей) на скорость химической реакции. Учащимся предлагается рассмотреть пример: взаимодействие кислорода и водорода происходит моментально, а взаимодействие азота и водорода очень медленно.

Учитель приводит следующие данные: для разрушения связей в молекулах азота требуется энергия 942 кДж/моль, а в молекулах кислорода – 494 кДж/моль. Теперь учащимся понятно, что более прочные молекулы азота труднее вступают в реакцию и скорость такой реакции очень мала. То есть, учащиеся подводятся к выводу, что скорость химической реакции зависит от природы реагирующих веществ. Затем обсуждается влияние агрегатного состояния вещества на скорость реакции. Учащиеся самостоятельно проводят реакцию взаимодействия PbNO3 и KJ в кристаллическом виде и в растворе и делают вывод, что скорость химической реакции зависит от агрегатного состояния вещества.

Следует добавить, что реакции между газообразными веществами идут еще быстрее и часто сопровождаются взрывом. Столкновения между частицами газов и в растворе происходят во всем объеме, а реакции с участием твердых веществ только на поверхности. Тогда как же можно увеличить скорость химических реакций с участием твердых веществ? Учитель наводит учащихся на мысль, что необходимо увеличить поверхность соприкосновения, т.е раздробить вещество.

Влияние этого фактора учащиеся исследуют на примере взаимодействия куска мрамора с соляной кислотой и мраморной крошки с соляной кислотой. Вновь формулируется вывод: скорость реакции зависит от степени измельчения твердого вещества. Урок 3. Влияние температуры на скорость реакции Обсуждение нового материала начинается с демонстрации взаимодействия 0,1М растворов тиосульфата натрия и соляной кислоты.

При комнатной температуре и при температуре на 10˚С выше комнатной. Для этого растворы нагревают на водяной бане при постоянном помешивании. Опыт показывает, что при комнатной температуре помутнение раствора появляется через 11с а при повышенной – через 5с. Учащиеся самостоятельно рассчитывают скорости обоих процессов: W 1 = = 0,009моль/л • с W 2 = = 0,02моль/л • с Таким образом, скорость реакции прямо пропорциональна температуре. Далее учащиеся совместно с учителем вычисляют, во сколько раз возросла скорость реакции при повышении температуры на 10˚С γ = . Число γ – это температурный коэффициент скорости данной реакции.

Температурный коэффициент показывает, во сколько раз возрастает скорость реакции при повышении температуры на 10˚С. Для закрепления понятия о температурном коэффициенте скорости реакции учащиеся решают ряд заданий по возрастанию сложности. Примером задачи более сложного уровня может быть следующая: температурный коэффициент скорости реакции равен 3, во сколько раз возрастает скорость реакции при повышении температуры от 20 до 50˚С? Для решения этой задачи можно дать готовую формулу, но тогда учащиеся не уловят сущности.

Поэтому лучше вывести формулу логическим путем. Предположим, что первоначальная скорость химической реакции равна 1моль/лּс, т.е при температуре 30˚С скорость реакции равна: Теперь вычислим скорость реакции при 40˚С (W 3) и при 50˚С (W 4): W 3 = W 2 • γ = 9 моль/л • с W 4 = W 3 • γ = 27 моль/л • с По этим данным видно, что можно вывести формулу для вычисления скорости реакции при повышении температуры на несколько десятков градусов.

Из расчетов видно, что температурный коэффициент должен быть возведен в степень равную разности между начальной и конечной температуры деленную на 10: ,т.е раз. Эта формула является математическим выражением правила Вант-Гоффа. Можно рассказать учащимся, что известный нидерландский ученый Я. Вант-Гофф пришел к выводу, что скорость большинства реакций при повышении температуры на каждые 10˚С повышается в 2-4 раза на основе экспериментальных исследований.

W 2 = W 1 • γ = 3 моль/л • с Теперь необходимо разобраться, почему температура влияет на скорость реакции. Учитель подводит учащихся к мысли о том, что энергия, сообщаемая веществу при нагревании, расходуется на разрушение химических связей исходных веществ. Демонстрируя следующий рисунок, учитель показывает, как изменяется электронная плотность химических связей при взаимодействии йода с водородом: Рис. 5 Схема образования ПАК на примере взаимодействия йода и водорода.

Когда молекулы сталкиваются, образуется общее для 4-х атомов электронное облако. Оно неустойчиво: электронная плотность из области между атомами исходных веществ как бы перетекает в область между атомами йода и водорода. Такое промежуточное соединение образованное двумя молекулами называется промежуточным активированным комплексом (ПАК). Он существует короткое время и распадается на две молекулы (в данном случае HJ). Для образования ПАК необходима энергия, которая бы разрушала химические связи внутри столкнувшихся молекул.

Эту энергию называют энергией активации. Энергия активации – эта энергия, необходимая частицам в количестве 1 моль для образования активированного комплекса. Графически этот процесс выглядит следующим образом: Таким образом, энергия активации – это энергетический барьер, который должны преодолеть исходные вещества, чтобы превратиться в продукты реакции: чем меньше энергия активации, тем выше скорость химической реакции.

Подводя итог урока, учитель формулирует вывод: при нагревании скорость химической реакции возрастает, потому что увеличивается число молекул способных преодолеть энергетический барьер. Урок 4. Катализ Понятие «катализ» формируется также на основе эксперимента. Учащимся показывают склянку с пероксидом водорода.

Они видят, что никаких признаков течения реакции нет. Но учащимся известно, что со временем пероксид водорода разлагается. Тогда учитель спрашивает: как можно ускорить процесс разложения. Скорее всего, последуют ответы об увеличении температуры до той, при которой разложение будет заметно. Учитель демонстрирует опыт нагревания пероксида водорода. При поднесении тлеющей лучинки, учащиеся видят, что она тухнет (значит выделяющегося кислорода явно недостаточно для поддержания горения). То есть нагревание мало увеличивает скорость химической реакции. Затем в склянку с пероксидом водорода учитель вносит диоксид марганца MnO2. Даже без тлеющей лучинки учащиеся наблюдают мгновенное выделение газа. Затем вместо MnO2 учитель вносит оксид кобальта (II) CoO (реакция идет еще более бурно), а после проводит тот же опыт с CuO (в данном случае реакция идет очень медленно). Учитель сообщает, что вещества, способные увеличивать скорость химической реакции называются катализаторами.

На опыте школьники убедились, что не каждое вещество может быть катализатором и ускорять химический процесс.

Отсюда вывод – действие катализаторов избирательно. Затем учитель обращает внимание учащихся на такой факт, что вещества, которые ускоряли ход реакции, сами не расходовались. Если их отфильтровать и высушить, то окажется, что масса их не изменилась [7]. Для объяснения этого факта учитель схематично показывает процесс каталитической реакции: А + В = АВ. 1 стадия. А + К = АК 2 стадия.

АК + В = АВ + К. Таким образом, вещество К остается количественно без изменения. Теперь необходимо разобраться в причине увеличения катализаторами скорости химической реакции. Увеличение скорости реакции под действием катализатора объясняется тем, что каждая из двух стадий с катализатором имеет меньший энергетический барьер по сравнению с непосредственной реакцией взаимодействия исходных веществ. Урок 5-6. Химическое равновесие и его смещение Урок начинается с актуализации знаний полученных на прошлых уроках, в частности об энергетическом барьере и образовании ПАК. Переходя к новой теме, учитель выясняет, во что превращается ПАК: в продукты реакции или исходные вещества.

Школьники приходят к выводу, что на самом деле возможны оба процесса. Учащимся демонстрируют схему: Превращение исходных веществ в продукты реакции называют прямой реакцией, а продуктов в исходные вещества – обратной. Учитель сообщает учащимся, что взятое в качестве примера взаимодействие йода с водородом – обратимый процесс, и на самом деле большинство реакций обратимы.

Далее учащимся сообщается, что со временем скорость прямой реакции уменьшается, а скорость обратной реакции сначала равна 0, а затем возрастает. Для более наглядной иллюстрации сказанного учитель демонстрирует учащимся график, который они переносят в тетрадь. Анализируя график, ученики приходят к выводу, что в какой то момент времени скорость прямой и обратной реакции выравниваются. Этот факт свидетельствует о наступлении равновесия.

Учащимся задается вопрос: прекращаются ли при наступлении химического равновесия обе реакции Если реакции прекращаются, то при изменении условий влияющих на скорость прямой или обратной реакции ничего не произойдет. Чтобы проверить этот факт, учащимся демонстрируют следующий опыт: две пробирки, закрытые пробками и соединенные стеклянной трубкой, заполнены диоксидом азота. NO2 при охлаждении димеризуется, а при нагревании происходит обратная реакция: NO2 (бурый) N2O4 (бесцветный) Одну пробирку опускаем в горячую воду, другую в стакан с кусочками льда. При охлаждении усиливается димеризация, и окраска смеси становится менее интенсивной.

При нагревании происходит разложение N2O4 и окраска смеси усиливается. Изменение окраски газа при изменении условий свидетельствует о том, что реакции продолжают протекать. Если вынуть пробирки из стакана, то через некоторое время окраска в них выровняется. Наступает равновесие. Учащимся вновь задается вопрос: идут ли при этом реакции, и почему не наблюдается видимых изменений (реакции идут, т.к их скорости можно изменить, видимых изменений нет, потому что наступило равновесие). Таким образом, учащиеся осознают, что равновесие можно изменять (смещать) меняя условия протекания процесса.

После этого приступают к изучению принципа Ле-Шателье. В качестве эпиграфа к изучению учитель приводит слова французского ученого: «Изменение любого фактора, могущего влиять на состояние химического равновесия системы вызывает в ней реакцию, стремящуюся противодействовать произведенному изменению». То есть, изменяя какую-либо характеристику системы, равновесие смещается так, чтобы уменьшить это изменение.

Учитель предлагает подумать, какие факторы влияют на смещение равновесия. В ответах учащихся выделяют концентрацию, температуру и давление. Причем влияние температуры они уже наблюдали в опыте с оксидом азота. Изучение влияния концентрации проводят в опыте взаимодействия роданида калия с хлоридом железа (III): KCNS + FeCl3 = Fe(CNS)3 + KCl Увеличивая концентрацию исходных веществ, окраска раствора становится более интенсивной, а при добавлении к прореагировавшему раствору KCl окраска становится менее насыщенной.

Таким образом, учащиеся видят, что увеличение концентрации исходных веществ ведет к большему образованию продуктов реакции (увеличение скорости прямой реакции), а значит к смещению равновесия вправо и наоборот. Влияние следующего фактора – давления учащиеся уже изучают не опытным путем, а при помощи моделирования процесса реакции.

Учащиеся уже знают, что давление в первую очередь влияет на реакции между газами. Учитель формулирует общий принцип Ле-Шателье: если на систему, находящуюся в равновесии, подействовать, изменяя концентрацию, давление, температуру, то равновесие сместится в направлении той реакции, которая уменьшит это воздействие. Влияние давления обычно рассматривают на примере реакции синтеза аммиака: N2 + 3H2 = 2NH3. Учащимся напоминают о зависимости давления от температуры.

Так как зависимость прямо пропорциональна, то увеличение давления, а значит и объема исходных газовых компонентов смещает равновесие в сторону образования аммиака (в сторону уменьшения объема). Также обсуждается вопрос смещения равновесия в условиях понижения давления. Схематически оба вывода можно записать так: N2 + 3H2 = 2NH3. Уменьшение р. Увеличение р. . Учитель формулирует вывод: повышение давления вызывает смещение равновесия в сторону той реакции, которая приводит к образованию меньшего количества газов, следовательно, к понижению давления.

Понижение давления вызывает смещение равновесия в сторону той реакции, которая приводит к образованию большего количества газов, следовательно, к повышению давления. Затем учащиеся выполняют ряд упражнений по этим правилам. Влияние температуры еще раз предлагается рассмотреть на примере следующей реакции: CaCO3 (тв) = CaO(тв) + CO2(г) – Q. Самостоятельно анализируя данное уравнение, учащиеся осознают, что если прямая реакция эндотермична, то обратная ей экзотермична.

Учащиеся могут испытывать трудности с выполнением этих реакций, поэтому учитель может задавать наводящие вопросы: как изменяется температура системы, если тепло поглощается (понижается), и как она изменяется при выделении тепла (повышается). Придя к таким выводам, учащиеся уже сами формулируют вывод: равновесие при повышении температуры смещается в сторону эндотермической (прямой), а при понижении – в сторону экзотермической (в данном случае обратной). Полнота предлагаемого материала в данном методе соответствует образовательным стандартам.

Данный метод позволяет активизировать мышление учащихся.

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДИЧЕСКИЕ ПОДХОДЫ К ФОРМИРОВАНИЮ ЗНАНИЙ О ХИМИЧЕСКИХ РЕАКЦИЯХ

Основная цель, которую должен достичь учитель химии при изучении данного понятия: сформировать целую систему знаний о химических реакциях,… Учащиеся должны не только освоить теоретический материал этой темы, но и уметь… Данная тема актуальна, так как необходимо разрабатывать наиболее эффективные методические подходы к формированию…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Формирование знаний о реакциях ионного обмена

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Формирование знаний о типах химических реакций
Формирование знаний о типах химических реакций. Изучение атомно-молекулярного учения и первоначальных химических понятий, а также некоторое накопление фактов позволяет более осмысленно подойти к кл

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги