рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Соотношение неопределенностей является сердцевиной  квантовой  механики.

Соотношение неопределенностей является сердцевиной  квантовой  механики. - раздел Литература, Грин Б. Элегантная Вселенная Свойства, Которые Кажутся Нам Обычно Столь Фундаментальными, Что Не Вызывают ...

Свойства, которые кажутся нам обычно столь фундаментальными, что не вызывают никаких сомнений, — что объекты имеют определенное положение и скорость, и что в определенные моменты времени они имеют определенную энергию, — теперь представляются всего лишь следствием того, что постоянная Планка так мала в масштабах нашего повседневного мира. Первостепенное значение имеет то, что применение этих квантовых принципов к структуре пространства-времени демонстрирует фатальное несовершенство «основ гравитации» и приводит нас к третьему и наиболее серьезному противоречию, с которым столкнулись физики в течение последнего столетия.


Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика

За последнее столетие наше понимание физического мира чрезвычайно углубилось. Теоретический аппарат квантовой механики и общей теории относительности позволил понять и предсказать доступные экспериментальной проверке физические явления, происходящие как на масштабах атомного и субатомного мира, так и на масштабах галактик, скоплений галактик и самой Вселенной в целом. Это фундаментальное достижение. Поистине вдохновляет то, что существа, обитающие на одной из планет, обращающейся вокруг заурядной звезды на окраине ничем не примечательной галактики, сумели путем размышлений и эксперимента выяснить и постичь ряд самых загадочных свойств физического мира. Тем не менее физики так устроены, что они никогда не будут удовлетворены до тех пор, пока не почувствуют, что достигли глубочайшего и наиболее фундаментального понимания Вселенной. Это то, что Стивен Хокинг назвал первым шагом к познанию «замысла Бога»1).

Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого глубочайшего уровня понимания. Поскольку их обычные области применения столь сильно различаются, в большинстве случаев требуется использование либо квантовой механики, либо общей теории относительности, но не обеих теорий одновременно. Но в некоторых экстремальных условиях, когда тела очень массивны и одновременно чрезвычайно малы по размерам (например, вещество вблизи центра черных дыр или Вселенная в целом в момент Большого взрыва), для полного понимания требуется как общая теория относительности, так и квантовая механика. Однако, подобно встрече огня и дороха, попытка объединения квантовой механики и общей теории относительности приводит к разрушительной катастрофе. При объединении уравнений этих теорий правильно поставленные физические задачи дают бессмысленные ответы. Бессмыслица часто принимает форму прогноза, что квантово-механическая вероятность некоторых процессов равна не 20, 73 или 91 %, а бесконечности. Но что же может означать вероятность, превышающая единицу, не говоря уже о бесконечности? Мы вынуждены заключить, что здесь есть какой-то серьезный порок. Внимательно анализируя основные понятия общей теории относительности и квантовой механики, можно выяснить, что же это за порок.

Суть квантовой механики

Когда Гейзенберг открыл соотношение неопределенностей, в физике произошел резкий поворот, и назад пути нет. Вероятности, волновые функции, интерференция и кванты — все это требует радикально новых способов видения мира. Однако не исключено, что какой-нибудь твердолобый физик-«классик» продолжает держаться за тонкую нить надежды, что когда все уляжется, эти отклонения от «классики» удастся встроить в систему понятий, не слишком сильно отличающуюся от прежних представлений. Однако соотношение неопределенностей ясно и недвусмысленно отрицает любую возможность возврата к прошлому.

Соотношение неопределенностей утверждает, что при переходе к меньшим расстояниям и меньшим промежуткам времени жизнь Вселенной становится все более неистовой. Мы столкнулись с некоторыми


86                            Часть II. Дилемма пространства, времени и квантов

свидетельствами этого при описании в предыдущей главе попыток точного определения положения элементарных частиц, таких как электроны. Освещая электроны светом все возрастающей частоты, мы измеряем их положение со все большей точностью, но за это приходится платить тем, что сами измерения вносят все большие возмущения. Высокочастотные фотоны обладают большой энергией и, следовательно, дают электронам резкий «толчок», значительно изменяющий их скорости. Подобно беспорядку в комнате, полной детей, мгновенное положение которых вам известно с большой точностью, но скорость которых, точнее, величину скорости и направление перемещения, вы почти не можете контролировать, эта неспособность определить одновременно положение и скорость элементарных частиц свидетельствует об изначальной хаотичности микромира.

Хотя этот пример выражает фундаментальную связь между неопределенностью и хаосом, на самом деле он раскрывает только часть обшей картины. Например, можно было бы думать, что неопределенность возникает только тогда, когда мы — бестактные наблюдатели — вмешиваемся в происходящее на сцене мироздания. Это не верно. Пример попытки удержать электрон в небольшой коробке и его бурная реакция на это — увеличение скорости и хаотичности движения — подводит нас немного ближе к истине. Даже без «прямых столкновений» с вносящими возмущение «экспериментаторскими» фотонами скорость электрона резко и непредсказуемо изменяется от одного момента времени к другому. Но и этот пример не раскрывает все ошеломляющие свойства микромира, следующие из открытия Гейзенберга. Даже в самой спокойной ситуации, которую только можно себе представить, например, в пустой области пространства, согласно соотношению неопределенностей в микромире имеет место невероятная активность. И эта активность возрастает по мере уменьшения масштабов расстояния и времени.

В понимании этого ключевую роль играет принцип квантово-механического баланса. Мы видели в предыдущей главе, что точно так же, как вы можете занять денег, чтобы решить важные финансовые проблемы, частица (например, электрон) может временно занять энергию, чтобы преодолеть реальный физический барьер. Это так. Но квантовая механика заставляет нас углубить эту аналогию. Представьте себе маниакального заемщика, который ходит от одного приятеля к другому, прося денег взаймы. Чем короче период времени, на который приятель может дать ему деньги, тем большую сумму он просит. Занимает и отдает, занимает и отдает — снова и снова он берет деньги в долг только для того, чтобы вскоре вернуть их. Как цены на акции в те дни, когда биржа ведет себя подобно американским горкам, количество денег, которые есть у маниакального заемщика в любой заданный момент времени, испытывает чрезвычайно сильные колебания, но по завершении всех этих операций его финансовый баланс находится в том же состоянии, в котором он был в начале.

Из соотношения неопределенностей Гейзенберга следует, что подобный хаотический перенос энергии и импульса непрерывно происходит во Вселенной на микроскопических расстояниях и в микроскопическом временном масштабе. Согласно соотношению неопределенностей, даже в пустых областях пространства (например, в пустой коробке) энергия и импульс являются неопределенными: они флуктуируют между крайними значениями, которые возрастают по мере уменьшения размеров коробки и временного масштаба, на котором проводятся измерения. Это выглядит так, как если бы область пространства внутри коробки являлась маниакальным «заемщиком» энергии и импульса, непрерывно беря «в долг» у Вселенной и неизменно «возвращая долг». Но что участвует в этих обменах, например, в пустой области пространства? Все. В буквальном смысле слова. Энергия (как и импульс) являются универсальной конвертируемой валютой. Формула Е = тс2 говорит нам, что энергия может превращаться в материю и наоборот. Например, если флуктуации энергии достаточно велики, они могут привести к мгновенному возникновению электрона и соответствующей ему античастицы — позитрона, даже в области, которая первоначально была пустой! Поскольку энергия


Глава 5. Необходимость новой теории: ОТО versus квантовая механика                87

должна быть быстро возвращена, данные частицы должны спустя мгновение аннигилировать, высвободив энергию, заимствованную при их создании. То же самое справедливо для всех других форм, которые могут принимать энергия и импульс — при рождении и аннигиляции других частиц, сильных колебаниях интенсивности электромагнитного поля, флуктуациях полей сильного и слабого взаимодействий. Квантово-механическая неопределенность говорит нам, что в микроскопическом масштабе Вселенная является ареной, изобилующей бурными и хаотическими событиями. Как заметил однажды Фейнман, «возникать и аннигилировать, возникать и аннигилировать — какая пустая трата времени»2). Поскольку заем и возврат в среднем компенсируют друг друга, пустая область в пространстве продолжает выглядеть тихой и спокойной, если исследовать ее в любом масштабе, кроме микроскопического. Однако соотношение неопределенностей указывает, что макроскопическое усреднение скрывает интенсивную микроскопическую активность3). Как мы увидим вскоре, этот хаос и является препятствием к слиянию общей теории относительности и квантовой механики.

Квантовая теория поля

На протяжении 1930-х и 1940-х гг. физики-теоретики во главе с такими личностями, как Поль Дирак, Вольфганг Паули, Юлиан Швингер, Фриман Дайсон, Син-Итиро Томонага и Фейнман, не покладая рук пытались разработать математический аппарат, который помог бы справиться с буйством микромира. Они установили, что квантовое волновое уравнение Шредингера (упомянутое в главе 4) на самом деле дает только приближенное описание физики микромира. Это приближенное описание работает очень хорошо, пока вы не пытаетесь (экспериментально или теоретически) слишком глубоко залезть в микроскопический хаос, но определенно отказывается работать, если кто-то делает такую попытку.

Основным  разделом  физики,  которым Шредингер пренебрег в своей формулировке квантовой механики, была специальная теория относительности. На самом деле Шредингер сначала сделал попытку включить специальную теорию относительности, но полученное в результате квантовое уравнение давало предсказания, находившиеся в противоречии с экспериментальными данными для атома водорода. Это побудило Шредингера воспользоваться широко применяемым в физике подходом «разделяй и властвуй»: вместо того, чтобы пытаться одним махом объединить в новой теории все, что известно о физическом мире, часто гораздо выгоднее бывает делать небольшие шаги, которые последовательно включают новейшие открытия, сделанные на переднем крае исследований. Шредингер искал и нашел математический аппарат, который позволил учесть экспериментально подтвержденный корпускулярно-волновой дуализм, но он не смог на этой стадии включить в рассмотрение специальную теорию относительности4) .

Однако вскоре физики осознали, что специальная теория относительности крайне важна для корректной формулировки законов квантовой механики. Хаос микромира требует признания, что энергия может проявлять себя самыми различными способами. Впервые это было осознано в формуле специальной теории относительности Е = тс2. Игнорируя специальную теорию относительности, подход Шредингера не учитывал взаимопревращаемость материи, энергии и движения.

Прежде всего физики сконцентрировали свои усилия на попытках объединить специальную теорию относительности с принципами квантовой механики при описании электромагнитного поля и его взаимодействия с веществом. В результате серии вдохновляющих достижений они создали квантовую электродинамику. Это был пример теории, впоследствии получившей название релятивистской квантовой теории поля или, кратко, квантовой теории поля. Такая теория является квантовой, поскольку она с самого начала строилась с использованием понятий вероятности и неопределенности; она является теорией поля, поскольку объединяет понятия квантовой механики и ранее


88                               Часть II. Дилемма пространства, времени и квантов

существовавшее классическое представление о силовом поле, и данном случае, максвелловском электромагнитном поле. Наконец, эта теория является релятивистской, поскольку с самого начала учитывает специальную теорию относительности. (Если вам нужен визуальный образ квантового поля, вы можете использовать образ классического поля, скажем, океан невидимых силовых линий, пронизывающих пространство, дополнив его в двух отношениях. Во-первых, вы должны представить квантовое поле образованным из частиц-составляющих, таких как фотоны в случае электромагнитного поля. Во-вторых, вы должны представить, что энергия, сосредоточенная в массах частиц и их движении, бесконечно много раз переходит от одного квантового поля к другому в процессе их непрерывных осцилляции в пространстве и времени.)

Квантовая электродинамика, бесспорно, является наиболее точной из когда-либо созданных теорий, описывающих природные явления. Иллюстрацию ее точности можно найти в работах Тойхиро Киношиты, специалиста по физике элементарных частиц из Корнелльского университета, который в течение последних 30 лет неутомимо использовал квантовую электродинамику для расчета некоторых тонких свойств электронов. Расчеты Киношиты заполняют тысячи страниц, и в конце концов потребовали для завершения самых мощных из когда-либо созданных компьютеров. Но затраченные им усилия принесли свои плоды, позволив рассчитать характеристики электронов, которые подтвердились экспериментально с точностью, превышающей одну миллиардную. Это согласие между результатами абстрактных теоретических вычислений и данными реального мира совершенно поразительно. С помощью квантовой электродинамики физики смогли подтвердить роль фотонов как «наименьших возможных сгустков света» и описать их взаимодействие с электрически заряженными частицами в рамках математически законченной модели, позволяющей получать убедительные предсказания.

Успех квантовой электродинамики побудил других физиков в  1960-х и  1970-х гг. попытаться использовать аналогичный подход для квантово-механического описания слабого, сильного и гравитационного взаимодействий. Для слабого и сильного взаимодействий этот подход оказался чрезвычайно плодотворным. Физики сумели, по аналогии с квантовой электродинамикой, разработать квантово-полевые теории сильного и слабого взаимодействий, получившие название квантовой хромодинамики и квантовой теории электрослабых взаимодействий. Название «квантовая хромодинамика» выбрано из-за колорита, более логичным было бы «квантовая динамика сильных взаимодействий», но это всего лишь название без глубокого смысла. С другой стороны, название «электрослабое» указывает на важную веху в нашем понимании взаимодействий в природе. В работе, за которую Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг получили Нобелевскую премию, они показали, что слабое и электромагнитное взаимодействия естественным образом объединяются в квантово-полевом описании, несмотря на то, что их проявления в окружающем нас мире столь разительно различаются. Слабое взаимодействие имеет исчезающе малую величину во всех масштабах, кроме субатомного, тогда как электромагнитные поля — видимый свет, радио- и телевизионные сигналы, рентгеновское излучение — неоспоримо присутствуют в нашем макроскопическом мире. Тем не менее, Глэшоу, Салам и Вайнберг показали, что при достаточно высоких энергиях и температурах, которые существовали спустя долю секунды после Большого взрыва, электромагнитное и слабое взаимодействия были слиты одно с другим, их характеристики были неразличимы. Поэтому им дали более точное название электрослабых взаимодействий. Вследствие не прекращающегося со времен Большого взрыва снижения температуры из единого высокотемпературного состояния разными путями выкристаллизовались электромагнитное и слабое взаимодействия в ходе процесса, известного под названием нарушение симметрии, который мы опишем ниже. В результате эти взаимодействия приобрели различный облик в той холодной Вселенной, в которой мы обитаем в настоящее время.


Глава 5. Необходимость новой теории: ОТО versus квантовая механика                89

Итак, если вы следите за хронологией, к 1970-м гг. физики разработали успешное квантово-механическое описание трех из четырех взаимодействий (сильного, слабого и электромагнитного), а также показали, что два из трех последних (слабое и электромагнитное взаимодействия) фактически имеют общее происхождение (электрослабое взаимодействие). В течение последних десятилетий физики подвергли это квантово-механическое описание трех негравитационных сил (как они взаимодействуют между собой и с введенными в главе 1 частицами материи) самой разнообразной экспериментальной проверке. Теория с успехом выдержала нее проверки. Когда экспериментаторы измерили значения 19 параметров (масс частиц, приведенных в табл. 1.1, констант взаимодействия для этих частиц, показанных в таблице и примечании 1 к главе 1, интенсивностей трех негравитационных взаимодействий в табл. 1.2, а также ряда других величин, обсуждать которые нет необходимости), а теоретики подставили полученные значения в формулы квантово-полевых теорий для сильного, слабого и электромагнитного взаимодействий частиц материи, предсказания этих теорий с поразительной точностью совпали с экспериментальными данными. Совпадение наблюдается вплоть до энергий, способных расщепить материю на частицы, размер которых составляет одну миллиардную от одной миллиардной метра, что является пределом для современного уровня развития техники. По этой причине физики называют теорию трех негравитационных взаимодействий и три семейства частиц материи стандартной теорией, или (чаще) стандартной моделью физики элементарных частиц.

Частицы-посланники

Так же, как для электромагнитного поля, наименьшим элементом которого является фотон, для полей сильного и слабого взаимодействий согласно стандартной модели имеются свои наименьшие элементы. Как упоминалось в главе I, мельчайшие сгустки сильного взаимодействия известны под названием глюонов, а соответствующие сгустки слабого взаимодействия — под названием калибровочных бозонов слабого взаимодействия (точнее, W-бозонов и Z-бозонов). Стандартная модель предписывает нам рассматривать эти сгустки как не имеющие внутренней структуры — в рамках данной модели они столь же элементарны, как частицы, входящие в состав трех семейств частиц материи.

Фотоны, глюоны и калибровочные бозоны слабого взаимодействия обеспечивают микроскопический механизм передачи взаимодействий, которые они представляют. Например, чтобы представить себе, как одна электрически заряженная частица отталкивает другую частицу с одноименным зарядом, можно вообразить, что каждая частица окружена электрическим полем — «облаком» или «туманом», являющимся носителем «электрических свойств», — а воздействие, воспринимаемое каждой частицей, обусловлено взаимодействием их силовых полей. Более точное описание отталкивания частиц на микроскопическом уровне выглядит несколько иначе. Электромагнитное поле состоит из полчищ фотонов; взаимодействие между двумя заряженными частицами на самом деле является результатом взаимного «обстрела» фотонами. Если использовать грубую аналогию, это похоже на изменение траекторий двух конькобежцев, обстреливающих друг друга градом шаров для боулинга. Подобным же образом и две электрически заряженные частицы влияют друг на друга, обмениваясь мельчайшими частицами света.

Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к «отталкиванию»: он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее послания о том, как получатель должен реагировать на соответствующее взаимодействие. Частицам, несущим


90                            Часть II. Дилемма пространства, времени и квантов

одноименный заряд, фотон передает сообщение «отдаляйтесь», а частицам с разноименным зарядом — «сближайтесь». По этой причине фотон иногда называют частицей-посланником электромагнитного взаимодействия. Аналогичным образом глюоны и слабые калибровочные бозоны являются частицами-посланниками сильного и слабого атомного взаимодействия. Сильное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, возникает за счет обмена глюонами между кварками. Можно сказать, что глюоны создают «клей», удерживающий эти субатомные частицы вместе. Слабое взаимодействие, отвечающее за некоторые виды превращений частиц при радиоактивном распаде, передается посредством калибровочных бозонов слабого взаимодействия.

Калибровочная симметрия

Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трех других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трех негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.

Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчета. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.

Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании 1 к главе 1, каждый кварк может быть окрашен в один из трех «цветов» (вычурно названных красным, зеленым и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зеленого с зеленым или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зеленым, зеленого с синим или синего с красным). На самом деле факты еще более поразительны. Если три цвета, т. е. три различных сильных заряда, сдвинуть определенным образом (грубо говоря, если на нашем вычурном цветовом языке красный, зеленый и синий изменятся и станут, например, желтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем ее в руках и под каким углом на нее смотрим. Аналогично можно сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления не изменятся при сдвигах зарядов этого взаимодействия — Вселенная совершенно не чувствительна к ним. По историческим причинам


Глава 5. Необходимость новой теории: ОТО versus квантовая механика      91

физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии5).

Здесь следует подчеркнуть один существенный момент. Как показали работы Германа Вейля 1920-х гг., а также работы Чень-Нин Янга и Роберта Миллса 1950-х гг., аналогично тому, что симметрия между всеми возможными точками наблюдения в общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования других видов сил. Подобно тому, как чувствительная система контроля параметров окружающей среды поддерживает на постоянном уровне температуру, давление и влажность воздуха путем компенсации внешних воздействий, некоторые типы силовых полей, согласно Янгу и Миллсу, обеспечивают компенсацию сдвигов зарядов сил, сохраняя неизменность физических взаимодействий между частицами. В случае калибровочной симметрии, связанной со сдвигом цветовых зарядов кварков, требуемая сила представляет собой не что иное, как само сильное взаимодействие. Иными словами, если бы не было сильного взаимодействия, физика могла бы измениться при упомянутом выше сдвиге цветовых зарядов. Это показывает, что хотя гравитационное и сильное взаимодействия имеют совершенно различные свойства (вспомним, например, что гравитация гораздо слабее сильного взаимодействия и действует на гораздо больших расстояниях), они, в определенном смысле, имеют общее происхождение: каждое из них необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, примененные к слабому и электромагнитному взаимодействиям, показывают, что их существование также связано с некоторыми видами калибровочной симметрии — так называемой слабой и электромагнитной калибровочной симметриями. Таким образом, все четыре взаимодействия непосредственно связаны с принципами симметрии.

Эта общая характеристика всех четырех взаимодействий, казалось бы, говорит в пользу предположения, сделанного в начале настоящего раздела. А именно, в наших попытках объединить квантовую механику и общую теорию относительности мы должны вести поиск в направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трех других видов взаимодействия. На протяжении многих лет эта логика вдохновляла группу выдающихся физиков на разработку такой теории, однако путь к ней оказался усеян препятствиями, и никому не удалось пройти его полностью. Попытаемся понять почему.

Общая теория относительности и квантовая механика

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путем последовательного увеличения масштаба и перехода к уменьшающимся областям пространства. По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трех уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться все время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуации, управляемых соотношением неопределенностей, является все — даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что


92                               Часть II. Дилемма пространства, времени и квантов

Рис.5.1. Рассматривая область пространства при все большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом   уровне. Попытки объединить общую теорию относительности и квантовую  механику  наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

оно будет нулевым в среднем, а его текущее значение будет изменяться за счет квантовых флуктуаций. Более того, соотношение неопределенностей говорит нам, что размер флуктуации гравитационного поля будет возрастать при переходе ко все меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведет к росту флуктуаций. Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвертом уровне увеличения на рис. 5.1. При переходе к еще меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестает напоминать мягко искривленные геометрические объекты типа резиновой пленки, ко-


Глава 5. Необходимость новой теории: ОТО versus квантовая механика                 93

торую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена' — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперед и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуации квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределенностей — вступает в прямое противоречие с центральным принципом обшей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчеты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времен, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо6). Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счету нашего маниакального заемщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых четко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем ее с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времен), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривленной геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуации при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (10~33)7). Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приве-


94                               Часть II. Дилемма пространства, времени и квантов

дем такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева. Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие ученые, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на ее самом глубоком и наиболее элементарном уровне может дать нам ее логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзкие и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн8).


Часть III. КОСМИЧЕСКАЯ СИМФОНИЯ

Глава 6 Только музыка, или Суть теории суперструн

С давних времен музыка является источником метафорических образов для тех, кто пытается разгадать тайны Вселенной. Начиная с «музыки сфер» древних пифагорейцев и до «гармонии мира», на протяжении столетий направляющих наши научные поиски, мы пытаемся понять песнь природы в величественных хороводах небесных тел и неистовой пляске субатомных частиц. С открытием теории суперструн музыкальные метафоры приобрели удивительную реальность, поскольку согласно этой теории микромир заполнен крошечными струнами, звучание которых оркеструет эволюцию мироздания. Согласно теории суперструн ветры перемен дуют через эолову арфу Вселенной.

В противоположность этому стандартная модель представляет элементарные компоненты мироздания в виде точечных образований, лишенных какой-либо внутренней структуры. Несмотря на необыкновенную мощь (как мы уже упоминали, практически все предсказания стандартной модели о свойствах микромира подтвердились с точностью до одной миллиардной от одной миллиардной доли метра, что представляет собой предел разрешающей способности современной техники), стандартная модель не смогла стать полной или «окончательной теорией», поскольку она не включает гравитационного взаимодействия. Более того, все попытки включить гравитацию в квантово-механическую формулировку этой модели закончились неудачей из-за неистовых флуктуации структуры пространства, проявляющихся на ультрамикроскопических расстояниях, т. е. на расстояниях, меньших планковской длины. Это неразрешенное противоречие явилось побудительным мотивом для поиска более глубокого понимания природы. В 1984 г. физик Майкл Грин, работавший в то время в колледже Королевы Марии, и Джон Шварц из Калифорнийского технологического института впервые представили убедительные доказательства того, что теория суперструн (или, кратко, теория струн) может дать такое понимание.

Теория струн предлагает оригинальное и глубокое изменение теоретического описания свойств Вселенной на ультрамикроскопическом уровне — изменение, которое, как постепенно осознают физики, модифицирует эйнштейновскую общую теорию относительности, делая ее полностью совместимой с законами квантовой механики. Согласно теории струн элементарные компоненты Вселенной не являются точечными частицами, а представляют собой крошечные одномерные волокна, подобные бесконечно тонким, непрерывно вибрирующим резино-


96                                                 Часть III. Космическая симфония

вым лентам. Здесь важно не дать названию ввести нас в заблуждение. В отличие от обычных струн, состоящих из молекул и атомов, струны, о которых говорит теория струн, лежат глубоко в самом сердце материи. Теория струн утверждает, что именно они представляют собой ультрамикроскопические компоненты, из которых состоят частицы, образующие атомы. Струны, являющиеся объектом теории струн, столь малы — в среднем их размер сопоставим с планковской длиной, — что даже при изучении с помощью самого мощного оборудования они выглядят точечными.

Однако уже простая замена точечных частиц струнами в качестве фундаментальных компонентов мироздания ведет к далеко идущим последствиям. Первое и самое главное состоит в том, что теория струн, по-видимому, разрешает противоречие между общей теорией относительности и квантовой механикой. Как мы увидим ниже, пространственная протяженность струн является новым ключевым звеном, позволяющим создать единую гармоничную систему, объединяющую обе теории. Во-вторых, теория струн действительно представляет объединенную теорию, поскольку в ней все вещество и все взаимодействия обязаны своим происхождением одной фундаментальной величине — колеблющейся струне. Наконец, как будет показано более подробно в последующих главах, помимо этих блестящих достижений, теория струн еще раз радикально изменяет наши представления о пространстве-времени1).

Краткая история теории струн

В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях — так называемая бета-функция Эйлера, — похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и ее различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определенном смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает ее смысла или значения, бета-функция Эйлера работала, но никто не понимал почему. Это была формула, которая требовала объяснения. Положение дел изменилось в 1970 г., когда Йохиро Намбу из Чикагского университета, Хольгер Нильсен из института Нильса Бора и Леонард Сасскинд из Станфордского университета смогли выявить физический смысл, скрывавшийся за формулой Эйлера. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений. Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. специалисты по физике высоких энергий смогли глубже заглянуть в субатомный мир и показали, что ряд предсказаний модели, основанной на использовании струн, находится в прямом противоречии с результатами наблюдений. В то же время параллельно шло развитие квантово-


Глава б.  Только музыка, или Суть теории суперструн                                97

полевой теории — квантовой хромодинамики, — в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.

Большинство специалистов по физике элементарных частиц полагали, что теория струн навсегда отправлена в мусорный ящик, однако ряд исследователей сохранили ей верность. Шварц, например, ощущал, что «математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое»2). Одна из проблем, с которыми физики сталкивались в теории струн, состояла в том, что она, как казалось, предоставляла слишком богатый выбор, что сбивало с толку. Некоторые конфигурации колеблющихся струн в этой теории имели свойства, которые напоминали свойства глюонов, что давало основание действительно считать ее теорией сильного взаимодействия. Однако помимо этого в ней содержались дополнительные частицы-переносчики взаимодействия, не имевшие никакого отношения к экспериментальным проявлениям сильного взаимодействия. В 1974 г. Шварц и Джоэль Шерк из французской Высшей технической школы сделали смелое предположение, которое превратило этот кажущийся недостаток в достоинство. Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия — гравитона. Хотя эти «мельчайшие частицы» гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область ее применения. Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию3).

Физическое сообщество отреагировало на это предположение весьма сдержанно. В действительности, по воспоминаниям Шварца, «наша работа была проигнорирована всеми»4). Пути прогресса уже были основательно захламлены многочисленными провалившимися попытками объединить гравитацию и квантовую механику. Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать ее для достижения еще более великих целей. Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. показали, что между теорией струн и квантовой механикой возникают свои, хотя и меньшие по масштабам, противоречия. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить ее в описание мироздания на микроскопическом уровне.

Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.

Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищен раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что большая часть от-


98                                                 Часть III. Космическая симфония

крытий физики элементарных частиц уже сделана. Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что ее полное подтверждение является делом не слишком отдаленного будущего. Выход за ее пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель (т.е. 19 чисел, характеризующих массы элементарных частиц, их константы взаимодействия и относительную интенсивность взаимодействий, известных из результатов экспериментов, но не объясненных теоретически), казался такой непосильной задачей, что лишь самые бесстрашные исследователи отваживались принять этот вызов. Однако спустя всего шесть месяцев настроения радикально изменились. Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн.

Период с 1984 по 1986 гг. теперь известен как «первая революция в теории суперструн». В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, «момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории»5'. Более того, для многих из этих свойств, как мы увидим ниже, теория струн дает гораздо более полное и удовлетворительное описание, чем стандартная  модель. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией.

Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьезные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближенное решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближенный вид. Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближенные решения приближенных уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближенные уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближенных методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. были периодом испытаний. Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надежно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период «засухи» время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближенных решений.

Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. на конференции по теории струн в университете Южной Калифорнии — доклад, который ошеломил аудиторию, до от-


Глава б. Только музыка, или Суть теории суперструн                                99

каза заполненную ведущими физиками мира. В нем он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия. Трудности, которые лежат впереди, будут серьезным испытанием для ученых, работающих в этой области, но в результате свет в конце тоннеля, хотя еще и отдаленный, может стать видимым.

В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции. Время от времени мы будем упоминать достижения, сделанные в ходе второй революции; подробное описание этих новейших достижений будет приведено в главах 12 и 13.

– Конец работы –

Эта тема принадлежит разделу:

Грин Б. Элегантная Вселенная

На сайте allrefs.net читайте: "Грин Б. Элегантная Вселенная"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Соотношение неопределенностей является сердцевиной  квантовой  механики.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Грин Б. Элегантная Вселенная. — М.: Едиториал УРСС, 2004. — 288 с.
ЭЛЕКТРОННОЕ ОГЛАВЛЕНИЕ Выдержки из рецензий на книгу Брайана Грина  «Элегантная Вселенная» Грин затрагивает потрясающее

New York
Брайан ГРИН ЭЛЕГАНТНАЯ ВСЕЛЕННАЯ Суперструны, скрытые размерности и поиски окончательной теории  

Таблица 1.2
Четыре фундаментальных типа взаимодействий, существующих в природе; частицы, переносящие эти взаимодействия, и их массы (в единицах массы протона). (Переносчики слабого взаимодействия имеют различн

Влияние на время. Часть I
Используя постоянство скорости света, можно с минимальными усилиями показать, что привычная обыденная концепция времени неверна. Представим себе лидеров двух воюющих держав, сидящих на противополож

Влияние на время. Часть II
Дать абстрактное определение времени трудно — попытки сделать это часто кончаются отсылкой на само слово «время» или приводят к запутанным лингвистическим конструкциям, цель которых состоит в том,

И все же: кто движется?
Относительность движения является ключом к пониманию теории Эйнштейна и одновременно источником недоразумений. Вы могли заметить, что перестановка точек зрения приводит к взаимному изменению ролей

Верна ли общая теория относительности?
В экспериментах, выполненных с использованием современной техники, не было обнаружено отклонений от предсказаний общей теории относительности. Только время сможет показать, позволит ли возрастающая

Что представляют собой порции?
Планк не мог обосновать гипотезу дискретности энергии волн, играющую центральную роль в предложенном им решении. За исключением того, что это работает, ни у Планка, ни у кого-либо еще не было никак

Волна или частица?
Каждому известно, что вода (и, следовательно, волны на поверхности воды) состоит из огромного количества молекул. Поэтому так ли удивительно, что световые волны тоже состоят из огромного числа част

Волны чего?
Явление интерференции, открытое Дэвиссоном и Джермером, реально продемонстрировало, что электроны подобны волнам. Но при этом возникает естественный вопрос: волнам чего? Одно из первых предп

Снова атомы в духе древних греков?
Как мы говорили в начале данной главы, и как показано на рис. 1.1, теория струн утверждает, что если бы мы могли исследовать точечные частицы, существование которых предполагает стандартная модель,

Ловкость рук?
Обсуждение, приведенное выше, может оставить у вас чувство неудовлетворенности. Вместо того чтобы показать, что теория струн укрощает субпланковские флуктуации структуры пространства, мы, похоже, и

Не только струны?
Струны имеют две важных особенности. Во-первых, несмотря на конечность пространственных размеров, они могут быть непротиворечиво описаны в рамках квантовой механики. Во-вторых, среди резонансных мо

Как выглядят свернутые измерения?
Дополнительные пространственные измерения теории струн не могут быть свернуты произвольным образом: уравнения, следующие из теории струн, существенно ограничивает геометрическую форму, которую они

Таблица 10.2
Аналогична табл. 10.1, но значение радиуса выбрано равным 1/10     Таблица 10.1     Таблица 10.2

Насколько общий этот вывод?
Что произойдет, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто

Приближает ли к ответу приближение?
Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подоб

Помогает ли это в неразрешенных вопросах теории струн?
И да, и нет. Нам удалось достичь более глубокого понимания, освободившись от некоторых выводов, которые, как стало ясно теперь, были следствиями использования теории возмущений, а не истинных принц

Позволяет ли теория струн продвигаться вперед?
Да. Совершенно неожиданный и весьма утонченный подход к изучению черных дыр в рамках теории струн начинает давать первые теоретические обоснования взаимосвязи между черными дырами и элементарными ч

Насколько черно черное?
Оказалось, что Хокинг тоже думал о схожести закона об увеличении площади горизонта черной дыры и закона о неминуемом росте энтропии, но решил, что эта аналогия есть просто совпадение, и выбросил ее

Ваш выход, теория струн!
Но так было до конца 1996 г., пока Строминджер и Вафа, опираясь на более ранние результаты Сасскинда и Сена, не написали работу «Микроскопическая природа энтропии Бекенштейна и Хокинга», появившуюс

Почему три?
Здесь сразу же возникает вопрос: в чем причина того, что при понижении симметрии для расширения отбираются ровно три пространственных измерения? Иными словами, кроме имеющегося экспериментального ф

До начала?
Так как точные уравнения теории струн неизвестны, Бранденбергеру и Вафе пришлось делать немало допущений и приближений в своих космологических исследованиях. Недавно Вафа сказал: «В нашей работе по

Что является фундаментальным принципом теории струн?
Один из универсальных уроков последнего столетия состоит в том, что известные законы физики находятся в соответствии с принципами симметрии. Специальная теория относительности основана на симметрии

Что есть пространство и время на самом деле, и можем ли мы без них обойтись?
В предыдущих главах мы часто вольно использовали понятия пространства и пространства-времени. В главе 2 мы описали эйнштейновское понимание того, что пространство и время нерасторжимо перемешаны бл

Приведет ли теория струн к переформулировке квантовой механики?
Вселенная подчиняется законам квантовой механика с фантастической точностью. Однако даже с учетом этого, при формулировке теорий за последние полвека физики следовали, конструктивно говоря, стратег

Можно ли теорию струн проверить экспериментально?
Среди многих свойств теории струн, которые мы обсудили в предыдущих главах, возможно, особенно важны три нижеследующих. Во-первых, гравитация и квантовая механика являются неотъемлемыми принципами

Существуют ли пределы познания?
Объяснение всего — даже в ограниченном смысле понимания всех сторон взаимодействий и элементарных составляющих Вселенной — есть одна из величайших задач, с которыми когда-либо сталкивалась наука. И

Глава 1
1.   Таблица справа — расширенный вариант табл. 1.1. В нее входят массы и константы взаимодействия элементарных частиц всех трех семейств. Кварк каждого типа может обладать тремя значениями сильног

Глава 2
1.   Присутствие массивных тел, подобных нашей Земле, усложняет картину за счет добавления гравитационных сил. Поскольку мы сфокусируем свое внимание на движении в горизонтальном, а не в вертикальн

Глава 3
1.   Isaac Newton, Sir Isaac Newton's Mathematical Principle of Natural Philosophy and His System of the World, Irans. A. Motleand Florian Cajori. Berkeley: University of California Press, 

Глава 4
1.   Richard Feynman, The Character of Physical Lain. Cambridge, Mass.: MIT Press, 1965, p. 129, (Рус. пер.: Феинман P. Характер физических законов. М.: Мир, 1968.) 2.   Хотя

Глава 5
1.   Stephen Hawking, A Brief History of Time. New York: Bantam Books, 1988, p. 175. (Рус. пер.: Хокинг С. От Большого взрыва до черных дыр. М.: Мир, 1998.) 2.    Цитируется

Глава 6
1.   Знающий читатель поймет, что в данной главе рассматривается только пертурбативная теория струн; выходящие за рамки теории возмущений аспекты обсуждаются в главах 12 и 13. 2.   Интервь

Глава 7
1.   Цитируется по книге R. Clark, Einstein: The Life and Times. New York: Avon Books, 1984, p. 287. 256                                                                  При

Глава 8
1.   Эго простая идея, однако, поскольку несовершенство нашего обычного языка приводит иногда к недопониманию, приведем два пояснения.  Во-первых, мы считаем, что муравей живет на поверхности

Глава 9
1.   Edward Witten, Reflections on the Fate of Spacetime, Physics Today, April 1996, p. 24. 2.   Интервью с Эдвардом Виттеном, 11 мая 1998 г. 3.   Sheldon Glashow and Paul

Глава 10
1.   Отметим для  полноты,  что хотя  большая  часть приведенных  выше аргументов в равной  степени справедлива как для открытых струн (струн со свободными концами), так и для замкнутых струн (кото

Глава 11
1. Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени.

Глава 12
1.   Цитируется по книге: John D. Barrow,  Theories of Everything. New York: Fawcett-Columbine, 1992, p. 13. (В рус.  пер. цитата есть в книге:  Кузнецов Б. Г. Эйнштейн: Жизнь. Смерть

Глава 13
1.   Знающему читателю будет понятно, что при преобразованиях   зеркальной   симметрии   коллапсирующая  трехмерная  сфера  одного  пространства Калаби—Яу отображается на коллапсирующую двумерную с

Глава 14
1.   Более точно, в данном температурном диапазоне Вселенная должна быть заполнена фотонами в соответствии с законами излучения идеально поглощающего тела (абсолютно черного тела на языке те

Глава 15
1.   Интервью с Эдвардом Виттеном, 4 марта 1998 г. 2.   Некоторые теоретики усматривают указание на эту идею в голографическом принципе — концепции, выдвинутой Сасскиндом и известны

Размышления о космологии.........   224
Стандартная космологическая модель ....   224 Проверка модели Большого взрыва......   225 От планковских времен до сотых долей секунды после Большого взрыва........   227

Сажин М. В. Современная космология в популярном изложении.
Чернин А. Д. Звезды и физика. Розенталь И.Л., Архангельская И.В. Геометрия, динамика, Вселенная. Левитан Е.

Грюнбаум А. Философские проблемы пространства и времени.
Серия «Синергетика: от прошлого кбудущему» Трубецков Д. И.Введение в синергетику. Малинецкий Г. Г., Потапов А. Б.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги