рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные принципы конструирования ПАВ сенсоров

Работа сделанна в 2001 году

Основные принципы конструирования ПАВ сенсоров - раздел Компьютеры, - 2001 год - Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки Основные Принципы Конструирования Пав Сенсоров. В Своей Основной Форме Химиче...

Основные принципы конструирования ПАВ сенсоров. В своей основной форме химический микросенсор представляет собой по меньшей мере два элемента миниатюрная подложка и химически селективное покрытие 10 . Подложка имеет контакт с покрытием и обеспечивает возникновение электрического сигнала, чьи характеристики отражают состояние покрытия.

Покрытие имеет контакт со средой, содержащей химическое вещество, которое должно быть обнаружено. Различия в свойствах покрытия, посредством которых происходят те или иные химические взаимодействия, обеспечивают перенос вещества или энергии через подложку 10 . Возникновение акустической волны достигается использованием ПАВ покрытия, линии задержки и колебательного контура.

При адсорбции чувствительным покрытием определяемых веществ происходит изменение характеристик поверхностно- акустической волны, таких как фазовая скорость, амплитуда и частота. Происходит это вследствие изменения упругих свойств чувствительного слоя и его электропроводности 1 . По этим изменениям можно судить о концентрации примеси в среде.

Рисунок 1 Конструкция ПАВ сенсора ПАВ микросенсор представляет собой тонкую пластинку из отполированного пьезоэлектрического материала например, кварца, ниобата лития, танталата лития, на которую нанесены две системы встречно-штырьевых преобразователей ВШП , одна из которых работает в качестве передающего преобразователя, а вторая является принимающим преобразователем 2 . Края на обоих концах пластинки искажаются или нагружаются абсорбционной резиной для подавления отражения в направлении распространения первичной волны.

Если на одну из систем ВШП подается высокочастотное напряжение, то на поверхности пластинки за счет обратного пьезоэффекта генерируется поверхностно-акустическая волна. Эта волна затем распространяется вдоль поверхности пластинки до тех пор, пока не попадет на другую систему ВШП, где она преобразуется обратно в высокочастотное напряжение. Время задержки между входным и выходным электрическими сигналами определяется по формуле, где l - среднее расстояние между системами ВШП, v - скорость распространения поверхностно-акустической волны.

Максимальное акустоэлектрическое взаимодействие систем ВШП имеет место при характеристической частоте, определяемой следующим соотношением, где h - шаг ВШП З . Соединение двух ВШП через высокочастотный усилитель рис. 1 дает возможность данному устройству поддерживать колебательный процесс на резонансной частоте при условии выполнения следующих требований набег фаз в кольце получающегося таким образом колебательного контура составляет, где n - целое число потери в линии задержки компенсируются усилителем 2 . Область распространения ПАВ между системами ВШП используется в сенсорных устройствах в качестве чувствительной области.

Любое изменение физических параметров среды температуры, давления оказывает влияние на рабочую частоту ПАВ прибора. Это явление используется в данном типе датчиков в качестве сенсорного эффекта.

В случае применении ПАВ приборов в качестве химических газовых сенсоров на область распространения поверхностно-акустической волны наносится чувствительное покрытие, обладающее свойством селективно взаимодействовать с определяемым веществом. Нанесение покрытия отражается в значительном ослаблении поверхностной волны и соответствующем уменьшении резонансной частоты прибора. Было показано 2 что изменение резонансной частоты, обусловленное наличием покрытия на поверхности распространения поверхностно-акустической волны, описывается следующим соотношением, где - сдвиг резонансной частоты за счет изменения чувствительным покрытием скорости поверхностно-акустической волны, и характеристики пьезоэлектрического материала начальная резонансная частота, h - толщина чувствительного покрытия его плотность.

Не трудно заметить, что произведение - представляет собой массу покрытия на единицу площади. Таким образом, изменение частоты поверхностно-акустической волны зависит в первую очередь от двух факторов - массы единицы площади пленки и механических свойств пьезоэлектрической подложки.

Применение слишком толстых пленок отражается в чрезмерном ослаблении скорости поверхностно-акустической волны и последующем затухании колебаний. Было установлено, что наиболее приемлемой является толщина пленки, составляющая 1 В результате адсорбции газов чувствительным покрытием изменяются свойства среды распространения поверхностно-акустической волны, а, следовательно, и ее характеристики.

В общем случае, для определения концентрации газов можно измерять изменение амплитуды, скорости или частоты поверхностно-акустической волны. Наиболее простым, надежным, а самое главное точным методом является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах. Некоторые задачи, решаемые ПАВ сенсорами В работе 6 авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, работающей на принципе измерения скорости поверхностно-акустической волны. Описывается микросистема для исследования запахов и ароматов, основанная на использовании набора пьезоэлектрических резонаторов с покрытиями, селективно сорбирующими пары определяемых соединений из атмосферы.

Полученный прибор состоит из восьми резонаторов, колеблющихся с разной частотой в интервале от 380 до 433 МГц и имеющих разные чувствительные покрытия. 7 В работе 8 найден способ и приведена конструкция устройства для обнаружения душистых веществ в воздухе. Устройство представляет собой систему, которая состоит из набора полупроводниковых и ПАВ сенсоров.

В статье даны результаты сравнения двух сортов кофе и двух видов духов. Также был проведен анализ составляющих запахов оливкового масла, столового вина, наркотиков морфин, кокаин и др различных взрывчатых веществ, пищевых корковых пробок, тела человека и запаха животных.

В работе 13 рассматривались поверхностно-акустические устройства, покрыт c В работе 11 представлен сенсор для обнаружения по месту и измерения низких концентраций газообразной ртути. Принцип действия сенсора основан на использовании генератора колебаний ПАВ и двойной линии задержки с золотым покрытием. Газообразная ртуть избирательно реагирует с золотой пленкой, образуя амальгаму. В результате увеличивается масса пленки, которая вызывает уменьшение частоты колебаний.

Измерение концентрации газа производится различием отклика сенсора при комнатной температуре и температуре, при которой достигается динамическое равновесие реакция амальгамирования и десорбции. Значение величины равновесия достаточно сильно зависит от концентрации газа. Таким образом, частота генератора колебаний в линии задержки может служить чувствительной мерой концентрации газообразной ртути. В работе также представлен график зависимости отклика сенсора от концентрации газообразной ртути в диапазоне 10-9. Также проанализированы такие особенности отклика сенсора как форма отклика, величина отклика, время отклика и линейность при 25 0С и 200 0С. В работе 15 рассмотрен ПАВ сенсор в качестве гравиметрического сенсора.

В этой работе изучалась адсорбция и десорбция хлорбензола, о-дихлорбензола и хлороформа в поли n-бутилметакрилате ПБМА при помощи ПАВ сенсора и с помощью методов гравиметрического анализа ГМА с использованием полимерных пленок. Процессы сорбции анализировались с помощью модели Фикиана и были получены коэффициенты наилучшего разделения и диффузии.

Экспериментальные данные хорошо соответствовали модели. Коэффициенты разделения, полученные из отклика ПАВ, не зависели от толщины покрытия и были в 2 3 раза выше, чем коэффициенты разделения, полученные из отклика гравиметрического сенсора. В противоположность этому, коэффициенты диффузии увеличивались линейно в зависимости от толщины покрытия в диапазоне частот 70-560 кГц. При минимальной толщине покрытия ПАВ коэффициенты были сравнимы с относительными ГМА коэффициентами.

Данное исследование еще раз подтверждает правоту того, что отклик ПАВ химических сенсоров выше, чем ожидаемый только от изменения массы. Вязко-эластичный эффект также более ярко выражен, чем гравиметрический. Более того, подобие диффузионных коэффициентов, полученных при более толстом слое полимера, говорит о том, что скорости изменения вязко-эластичных компонентов ПАВ и гравиметрического элемента подобны.

Авторами работы был сделан вывод, что оба явления имеют в своей основе один и тот же процесс адсорбцию анализируемого вещества в полимер. И с этой точки зрения, по мнению авторов работы, покрытый полимером ПАВ сенсор может считаться частным случаем гравиметрического сенсора. В работе 14 представлен сенсор на ПАВ с двойной линией задержки с напыленной пленкой WO3 Ru в качестве чувствительного элемента. В результате окисления оксида азота NO полупроводниковой пленки оксида металла уменьшается концентрация носителей в пленке и, следовательно, ее проводимость.

Это уменьшение проводимости пленки является причиной увеличения скорости ПАВ. Таким образом, в приборе, который представляет собой колебательный контур с двойной линией задержки, частота чувствительного канала является мерой чувствительности концентрации NO. В работе также представлены отклики данного сенсора на концентрации NO 10-9 10-6 в воздухе, то есть среди газов более высоких концентраций.

Также в работе проанализированы зависимости отклика сенсора от времени отклика, времени восстановления, минимального уровня концентрации, уровня насыщения и линейность отклика. Кроме того, приводятся рисунки и возможности улучшения показателей сенсора в будущем. В работе 13 представлен ПАВ сенсор для измерения относительной влажности и концентрации углекислого газа при комнатной температуре. Он представляет собой две 97 МГц линии задержки ПАВ, покрытые тонкими полимерными пленками. Одна линия задержки служит для измерения концентрации, вторая для измерения относительной влажности.

В работе также представлены кривые зависимости отклика сенсора от определяемых параметров. В работе 20 использовался датчик, содержащий 2 независимые идентичные линии задержки с исследуемыми покрытиями. Каждая линия задержки соединена с частотомером и через специальную плату интерфейса с персональной ЭВМ Нейрон. Математическое обеспечение позволяло в режиме реального времени считывать показания частотомеров 1 раз в секунду и накапливать результаты измерений в буфере ЭВМ для последующей обработки.

Как видно из работ зарубежных и отечественных разработчиков ПАВ сенсоров, при проведении исследований необходима обработка больших объемов данных. Поэтому возникает необходимость повысить степень автоматизации экспериментальной установки. Для чего считается целесообразным сопряжение измерительных приборов, необходимых для проведения эксперимента с ЭВМ. Данная задача успешно решается зарубежными разработчиками, в то время как среди научных разработок отечественных ученых такая задача была решена только в работе 20 Цель работы разработать схему, программу, обслуживающую интерфейсное устройство сопряжения и произвести подключение измерительной установки к ЭВМ. В качестве чувствительных элементов на поверхностно-акустических волнах использовались линии задержки ПАВ, выполненные на АТ-срезе монокристаллического кварца таким образом, что частота генерируемой поверхностно-акустической волны составляла 170 МГц. Для выполнения поставленных в данной работе задач была изготовлена экспериментальная ячейка следующей конструкции.

На основание, представляющее собой пластину 100 100 10 мм из нержавеющей стали, устанавливался высокочастотный усилитель.

Усилитель был помещен в металлический корпус 25х25х10 мм и его параметры были специально подобраны для использовавшихся в ходе исследований ПАВ преобразователей. В верхней грани корпуса усилителя имелись контактные отверстия, в которые вставлялись ножки стандартного ПАВ держателя.

В качестве крышки ПАВ преобразователя, для исключения влияния внешних воздействий на частоту ПАВ, использовалась нержавеющая пластина 40х40х4 мм, в которой было вырезано отверстие необходимой геометрии и размеров. На верхнюю грань этой пластины напротив отверстия была приварена еще одна пластинка таким образом, что в первой пластине образовалась полость. В данную полость помещался ПАВ преобразователь. Для создания вакуумного уплотнения крышка прижималась к усилительной коробке при помощи болтов диаметром 5 мм через прокладку из силиконовой резины.

В верхнюю часть пластины над ПАВ преобразователем были вварены два штуцера из нержавеющих трубок 3-х миллиметрового диаметра для введения в ячейку требуемых газовых потоков, а также откачки ее на вакуум. Для исключения попадания пыли и частиц грязи на поверхность распространения поверхностно-акустической волны, в штуцеры были введены специальные фильтры, используемые в качестве вкладышей во входных штуцерах газовых редукторов.

При проведении экспериментов штуцеры ячейки соединялись с соответствующими выводами универсального газового стенда. Рисунок 2

– Конец работы –

Эта тема принадлежит разделу:

Разработка сенсора на поверхностно-акустических волнах. Автоматизация измерительной установки

Контроль этот осуществляется какстационарными приборами, так и портативными. К стационарным приборам можно отнести инфракрасные спектрометры, газовые… Работа портативных приборов основана на использовании твердотельных преобразователей.Такие преобразователи позволяют…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные принципы конструирования ПАВ сенсоров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Конструкция экспериментальной ячейки
Конструкция экспериментальной ячейки. Для измерения частоты ПАВ в работе использовался частотомер электронно-счетный Ч3-54, характеристики которого представлены ниже Рисунок 3 Внешний вид частотоме

Особенности задачи
Особенности задачи. Одной из задач данной диссертации является повышение автоматизации установки, то есть сопряжение ее ЭВМ. Задачей сопряжения было получение и обработка выходного сигнала частотом

Постановка задачи сопряжения
Постановка задачи сопряжения. При использовании интерфейса RS-232C задача сопряжения объекта обмена информацией с компьютером обычно формулируется следующим образом требуется обеспечить связь с уда

Преобразование кода
Преобразование кода. Наиболее просто проблема разрешается в том случае, если в качестве центрального процессора удаленного контроллера применена однокристальная микроЭВМ, уже содержащая Универсальн

Параллельные порты ввода вывода
Параллельные порты ввода вывода. Для связи ОМЭВМ с объектами управления, для ввода вывода информации используются 32 двунаправленные линии. Эти линии сгруппированы в 4 порта по 8 лини

Последовательный порт ввода вывода
Последовательный порт ввода вывода. В состав ОМЭВМ входит последовательный порт, представляющий собой асинхронный приемопередатчик. Он осуществляет прием и передачу информации, представленно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги