рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Аппаратная реализация передачи данных

Аппаратная реализация передачи данных - раздел Компьютеры, Компьютерные сети и технологии Аппаратная Реализация Передачи Данных. Характеристики Коммуникационной Сети М...

Аппаратная реализация передачи данных. Характеристики коммуникационной сети можно использовать для оценки ее качества: • скорость передачи данных по каналу связи; • пропускную способность канала связи; • достоверность передачи информации; • надежность канала связи и модемов.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых в единицу времени – секунду (bps – bit per second). Примечание. Часто используется единица измерения скорости – бод, т.е. число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах. Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации.

Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300 - 57600 бит/с, а для синхронных – до 2 Мбит/с. Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени – секунду.

При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Единица измерения пропускной способности канала связи – знак в секунду (cps – character per second). Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации.

Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков.

Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований. Единица измерения достоверности: количество ошибок на знак – ошибок/знак. Для вычислительных сетей этот показатель должен лежать в пределах 10-6 – 10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет эффективнее оценить надежность системы. Единица измерения надежности: среднее время безотказной работы в часах. Для вычислительных сетей среднее время безотказной работы должно быть достаточ¬но большим и составлять, как минимум, несколько тысяч часов. 2.4.3.2. Протоколы компьютерной сети – набор правил, определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ. Протокол – это не программа.

Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в программе. Обычно функции протоколов различных уровней реализуются в драйверах для различных вычислительных сетей. Для организации надежного сетевого взаимодействия необходима стандартизация.

Она реализована в виде особой спецификации OSI Reference Model (сетевая модель OSI). Данная модель представляет семиуровневый подход к сетевому взаимодействию (рис. 7): 1. Application layer 2. Presentation layer 3. Session layer 4. Transport layer 5. Network layer 6. Data Link layer 7. Physical layer Рис. 7 • Application layer (уровень приложений, прикладной уровень) – представляет набор интерфейсов для приложений, позволяющий получить доступ к сетевым службам. Примеры протоколов, используемых на этом уровне: HTTP – доступ к ресурсам World Wide Web; FTP – протокол передачи/приема файлов; SMTP – протокол передачи электронной почты и др. • Presentation layer (уровень представления) – преобразует данные в общий формат для передачи по сети. • Session layer (сеансовый уровень) – позволяет двум сторонам поддерживать по сети продолжительное взаимодействие, называемое сеансом. • Transport layer (транспортный уровень) – управляет передачей по сети. Примеры: NetBIOS/NetBEUI; SPX, TCP. • Network layer (сетевой уровень) – осуществляет адресацию сообщений для доставки, а также преобразует логические сетевые адреса и имена в соответствущие им физические.

Примеры: IPX, IP • Data Link layer (канальный уровень) – посылает специальные пакеты данных с сетевого уровня на физический. • Physical layer (физический уровень) – осуществляет преобразование потока битов в сигналы, и наоборот.

В современных сетях используются так называемые семейства протоколов. Наиболее известны из них: IPX/SPX и TCP/IP. Протоколы IPX/SPX разработаны для локальных сетей стандарта Novell Net Ware, но релизованы и для сетей стандарта Microsoft.

В их основе транспортный протокол SPX и сетевой протокол IPX. Семейство протоколов TCP/IP на основе транспортного протокола TCP и сетевого протокола IP включает в себя множество протоколов разного уровня: протокол управления сетью SNMP; протокол динамической конфигурации сети DHCP: служба имен Windows в Internet-протоколах WINS; доменная служба имен DNS; вышеупомянутые прикладные протоколы HTTP, SMTP, FTP, а также протоколы доступа к электронной почте POP3 и IMAP, к телеконференциям USENET NNTP и др. Первоначально протоколы TCP/IP использовались только в глобальной сети Internet, но со временем стали основой для локальных сетей типа intranet.

В сети этого типа используются не только те же протоколы, что и в Internet, но и такие же информационные ресурсы, а следовательно, и прикладное программное обеспечение. Пользователь intranet-сети может даже не заметить, из какой сети он получает информацию, из локальной или глобальной, так как intranet-сети, как правило, соединены с Internet.

В дальнейшем мы будем рассматривать только intranet-сети. 2.4.3.3. Аппаратные средства. Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами (NIC – Network Interface Card). Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи. Как правило, установка и настройка современного сетевого адаптера не вызывает затруднений, т. к. они поддерживают стандарт Plug and Play. Поэтому процедура установки и настройки сводится лишь к установке драйвера устройства, да и то, если операционная система «не знакома» с этим типом устройств.

Если же применяются устаревшие конструкции (они размещаются в слотах типа ISA), то возможны конфликты с другим оборудованием (чаще всего это звуковые карты или последовательный порт COM1 или COM2). Кроме одноканальных адаптеров используются и многоканальные устройства – мультиплексоры передачи данных или просто мультиплексоры. Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных – первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры. Для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка¬нала связи в ЭВМ выполнить обратное действие – преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Аналоговый сигнал представляет собой специальным образом обработанный (модулированный) сигнал несущей частоты.

Такие преобразования выполняет специальное устройство – модем. Модем – устройство, выполняющее модуляцию и демодуляцию несущих сигналов при передаче их из ЭВМ в канал связи и при приеме ЭВМ из канала связи. В качестве несущего сигнала может использоваться практически любой аналоговый сигнал (телефонный, телеграфный, телевизионный и т.д.). В соответствии с типом несущего сигнала различают и типы модемов.

Наиболее распространенными из них являются телефонные, но в последнее время все более широкое распространение получают DSL-модемы, позволяющие передавать информацию по кабельным сетям с высокой скоростью (это может быть и обычный телефонный кабель, кабельное телевидение и т.п.). Наиболее дорогой компонент вычислительной сети – канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних каналов связи на один внешний. Для выполнения функции коммутации используются специальные устройства – концентраторы.

Концентратор – устройство, коммутирующее несколько каналов связи и один путем частотного разделения в сетевой конфигурации «звезда» (см. ниже), действует на физическом уровне сетевой модели OSI. Различают три основных типа концентраторов: пассивные, активные и интеллектуальные.

Пассивный концентратор представляет собой только точку разветвления сети. Активный концентратор (hub) не только разветвляет сеть, но и усиливает сигнал, а, следовательно, требует дополнительной энергии. Интеллектуальные концентраторы (switch), кроме того, осуществляют функции маршрутизации. В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители. Повторитель – устройство, действующее на физическом уровне сетевой модели OSI и обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м, а дистанционные – до 2000 м. Маршрутизатор (router) – устройство, работающее на сетевом уровне сетевой модели OSI и связывающее два и более сетевых сегмента (или подсети). Маршрутизатор получает информацию о сетевом адресе пакета и сравнивает его с элементами таблицы маршрутизации.

Если имеется совпадение, пакет направляется по нужному адресу. Маршрутизаторы могут выполняться в виде отдельных устройств. Но роль маршрутизатора может выполнять и специальное программное обеспечение, установленное на сервере. Шлюз (gateway) – метод осуществления связи между двумя или несколькими сетевыми сегментами. Другой функцией шлюза является преобразование протоколов, например, IPX/SPX в TCP/IP и наоборот.

В качестве шлюзов обычно выступают компьютеры со специальным программным обеспечением. 2. ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ 2.1.

– Конец работы –

Эта тема принадлежит разделу:

Компьютерные сети и технологии

По роду решаемых офисных задач оба компьютера имеют приблизительно одинаковые конфигурацию, программное и информационное обеспечение. По мере работы дисковое пространство обоих компьютеров заполняется и наступает… Стоимость такой простейшей модернизации составит около 1000 грн. Возможно ли другое решение? Возможно, если соединить…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Аппаратная реализация передачи данных

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Назначение и классификация компьютерных сетей
Назначение и классификация компьютерных сетей. Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимы также динамичные спосо

Классификация вычислительных сетей
Классификация вычислительных сетей. В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса: • глобальные (WAN – Wide Area Netwo

Режимы передачи данных
Режимы передачи данных. Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник. Передатчик – устройство, являющееся ист

Коды передачи данных
Коды передачи данных. Для передачи информации по каналам связи используются специальные коды. Они стандартизованы и определены рекомендациями ISO (International Organization for Standardization) –

Функциональные группы устройств в сети
Функциональные группы устройств в сети. Основное назначение любой компьютерной сети – предоставление информационных и вычислительных ресурсов подключенным к ней пользователям. С этой точки зрения л

Управление взаимодействием устройств в сети
Управление взаимодействием устройств в сети. Информационные системы, построенные на базе компьютерных сетей, обеспечивают реше¬ние следующих задач: хранение и обработка данных, организация доступа

Физическая передающая среда локальных сетей
Физическая передающая среда локальных сетей. Физическая среда обеспечивает перенос информации между абонентами вычислительной сети. Как уже упоминалось, физическая передающая среда ЛВС представлена

Основные топологии ЛВС
Основные топологии ЛВС. Вычислительные машины, входящие в состав ЛВС, могут быть расположены самым случайным образом на территории, где создается вычислительная сеть. Следует заметить, что для спос

Настройка рабочей станции для работы в intranet-сети
Настройка рабочей станции для работы в intranet-сети. Если компьютер оснащен сетевой картой Ethernet, то после ее настройки (см. п. 2.4.3.3) на рабочем столе появляется специальная системная папка

Настройка и использование ресурсов общего доступа
Настройка и использование ресурсов общего доступа. Доступными для общего использования в сети могут быть только ресурсы (диски, папки и принтеры), предназначенные для этого их владельцем, то есть п

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги