рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Эвристический (упорядоченный) поиск

Эвристический (упорядоченный) поиск - раздел Компьютеры, Искусственный интеллект Идея, Лежащая В Основе Большинства Эвристических Алгоритмов, Состоит В Том, Ч...

Идея, лежащая в основе большинства эвристических алгоритмов, состоит в том, чтобы оценивать (с помощью численных оценок) перспективность нераскрытых вершин пространства состояний (с точки зрения достижения цели), и выбирать для продолжения поиска наиболее перспективную вершину. Самый обычный способ использования эвристической информации – введение так называемой эвристической оценочной функции. Эта функция определяется на множестве вершин пространства состояний и принимает числовые значения. Значение оценочной функции Est(V) может интерпретироваться как перспективность раскрытия вершины, или вероятность ее расположения на решающем пути. Обычно считают, что меньшее значение Est(V) соответствует более перспективной вершине, и вершины раскрываются в порядке увеличения (возрастания) значения оценочной функции.

Таким образом, основные шаги алгоритма эвристического перебора таковы:

Шаг 1. Поместить начальную вершину в список Open и вычислить ее оценку (значение оценочной функции).

Шаг 2. Если список Open пуст, то окончание алгоритма и выдача сообщения о неудаче поиска, в противном случае перейти к шагу 3.

Шаг 3. Выбрать из списка Open вершину с минимальной оценкой (среди вершин с одинаковой минимальной оценкой выбирается любая); перенести эту вершину (назовем ее Current) в список Closed.

Шаг 4. Если Current – целевая вершина, то окончание алгоритма и выдача решения задачи, получающегося просмотром указателей от нее к начальной вершине, в противном случае перейти к следующему шагу.

Шаг 5. Раскрыть вершину Current, построив все ее дочерние вершины. Если таких вершин нет, то перейти к шагу 2, в ином случае – к шагу 6.

Шаг 6. Для каждой дочерней вершины вычислить оценку (значение оценочной функции), поместить все дочерние вершины в список Open, и построить указатели, ведущие от этих вершин к родительской вершине Current. Перейти к шагу 2.

Заметим, что поиск в глубину можно рассматривать как частный случай упорядоченного поиска с оценочной функцией Est(V) = D(V) , а поиск в ширину -- с Est(V) = 1/D(V) , где D – глубина вершины V.

Рассмотрим работу алгоритма эвристического поиска опять же на примере игры в восемь. В качестве оценочной функции можно взять следующую:

Est(V) = D(V) + K(V) где

D(V) – глубина вершины V, или число ребер дерева на пути от этой вершины к начальной вершине;

K(V) – число фишек позиции-вершины V, лежащих не на «своем» месте.

На рис.15 показано дерево, построенное алгоритмом упорядоченного перебора с указанной оценочной функцией (начальное состояние то же, что и в примерах рис. 13 и 14, а целевое показано на рис.3). Оценка каждой вершины приведена рядом с ней внутри кружка. Отдельно стоящие цифры, как и раньше, показывают порядок, в котором раскрывались вершины. Видно, что так как минимизация оценочной функции производится для всего пространства состояний, то раскрываемые друг за другом вершины могут располагаться в совершенно разных частях пространства состояний.

Найденный путь решения задачи длиною в пять ходов может быть получен и другими методами перебора, но использование оценочной функции приводит к существенно меньшему числу раскрытий вершин. Действительно, сравнение трех алгоритмов перебора показывает, что

В общем случае (в среднем) алгоритм эвристического поиска обнаруживает решение быстрее алгоритмов слепого перебора. Важно однако, что использование эвристической функции не может гарантировать сокращение поиска во всех случаях, и иногда (хотя и редко) решение задачи может искаться дольше, чем с использованием слепого метода.

Ясно, что подбор «хорошей» эвристической функции (существенно сокращающей поиск) – наиболее трудный момент при формализации задачи, особенно это важно в больших пространствах состояний. Можно сравнивать различные оценочные функции для одной задачи по их эвристической силе, т.е. по тому, насколько они сокращают (убыстряют) поиск.

 

Метод ветвей и границ. Из формирующихся в процессе поиска неоконченных путей выбирается самый короткий и продлевается на один шаг. Полученные новые неоконченные пути (их столько, сколько ветвей в данной вершине) рассматриваются наряду со старыми, и вновь продлевается на один шаг кратчайший из них. Процесс повторяется до первого достижения целевой вершины, решение запоминается. Затем из оставшихся неоконченных путей исключаются более длинные, чем законченный путь, или равные ему, а оставшиеся продлеваются по такому же алгоритму до тех пор, пока их длина меньше законченного пути. В итоге либо все неоконченные пути исключаются, либо среди них формируется законченный путь, более короткий, чем ранее полученный. Последний путь начинает играть роль эталона и т. д.

Алгоритмы поиска пути на графе различаются также направлением поиска. Существуют прямые, обратные и двунаправленные методы поиска. Прямой поиск идет от исходного состояния и, как правило, используется тогда, когда целевое состояние задано неявно. Обратный поиск идет от целевого состояния и используется тогда, когда исходное состояние задано неявно, а целевое явно. Двунаправленный поиск требует удовлетворительного решения двух проблем: смены направления поиска и оптимизации "точки встречи". Одним из критериев для решения первой проблемы является сравнение "ширины" поиска в обоих направлениях-выбирается то направление, которое сужает поиск. Вторая проблема вызвана тем, что прямой и обратный пути могут разойтись и чем уже поиск, тем это более вероятно.

2. Планирование по задачам. Этот метод приводит к хорошим результатам потому, что часто решение задач имеет иерархическую структуру. Однако не обязательно требовать, чтобы основная задача и все ее подзадачи решались одинаковыми методами. Редукция полезна для представления глобальных аспектов задачи, а при решении более специфичных задач предпочтителен метод планирования по состояниям. Метод планирования по состояниям можно рассматривать как частный случай метода планирования с помощью редукций, ибо каждое применение оператора в пространстве состояний означает сведение исходной задачи к двум более простым, из которых одна является элементарной. В общем случае редукция исходной задачи не сводится к формированию таких двух подзадач, из которых хотя бы одна была элементарной.

Поиск планирования в пространстве задач заключается в последовательном сведении исходной задачи к все более простым до тех пор, пока не будут получены только элементарные задачи. Частично упорядоченная совокупность таких задач составит решение исходной задачи. Расчленение задачи на альтернативные множества подзадач удобно представлять в виде И/ИЛИ-графа. В таком графе всякая вершина, кроме концевой, имеет либо конъюнктивно связанные дочерние вершины (И-вершина), либо дизъюнктивно связанные (ИЛИ-вершина). В частном случае, при отсутствии И-вершин, имеет место граф пространства состояний. Концевые вершины являются либо заключительными (им соответствуют элементарные задачи), либо тупиковыми. Начальная вершина (корень И/ИЛИ-графа) представляет исходную задачу. Цель поиска на И/ИЛИ-графе - показать, что начальная вершина разрешима. Разрешимыми являются заключительные вершины (И-вершины), у которых разрешимы все дочерние вершины, и ИЛИ-вершины, у которых разрешима хотя бы одна дочерняя вершина. Разрешающий граф состоит из разрешимых вершин и указывает способ разрешимости начальной вершины. Наличие тупиковых вершин приводит к неразрешимым вершинам. Неразрешимыми являются тупиковые вершины, И-вершины, у которых неразрешима хотя бы одна дочерняя вершина, и ИЛИ-вершины, у которых неразрешима каждая дочерняя вершина.

Алгоритм Ченга и Слейгла. Основан на преобразовании произвольного И/ИЛИ-графа в специальный ИЛИ-граф, каждая ИЛИ-ветвь которого имеет И-вершины только в конце. Преобразование использует представление произвольного И/ИЛИ-графа как произвольной формулы логики высказываний с дальнейшим преобразованием этой произвольной формулы в дизъюнктивную нормальную форму. Подобное преобразование позволяет далее использовать алгоритм Харта, Нильсона и Рафаэля.

Метод ключевых операторов. Пусть задана задача <А, В> и известно, что оператор f обязательно должен входить в решение этой задачи. Такой оператор называется ключевым. Пусть для применения f необходимо состояние С, а результат его применения есть f(с). Тогда И-вершина <A,В> порождает три дочерние вершины: <A, С>, <С, f(c}> и <f(с), В>, из которых средняя является элементарной задачей. К задачам <A, С> и <f(с), В> также подбираются ключевые операторы, и указанная процедура редуцирования повторяется до тех пор, пока это возможно. В итоге исходная задача <A, В> разбивается на упорядоченную совокупность подзадач, каждая из которых решается методом планирования в пространстве состояний.

Возможны альтернативы по выбору ключевых операторов, так что в общем случае будет иметь место И/ИЛИ-граф. В большинстве задач удается не выделить ключевой оператор, а только указать множество, его содержащее. В этом случае для задачи <А, В> вычисляется различие между A и В, которому ставится в соответствие оператор, устраняющий это различие. Последний и является ключевым.

Метод планирования общего решателя задач (ОРЗ). ОРЗ явился первой наиболее известной моделью планировщика. Он использовался для решения задач интегрального исчисления, логического вывода, грамматического разбора и др. ОРЗ объединяет два основных принципа поиска:

анализ целей и средств и рекурсивное решение задач. В каждом цикле поиска ОРЗ решает в жесткой последовательности три типа стандартных задач: преобразовать объект A в объект В, уменьшить различие D между A и В, применить оператор f к объекту A. Решение первой задачи определяет различие D второй - подходящий оператор f, третьей - требуемое условие применения С. Если С не отличается от A, то оператор f применяется, иначе С представляется как очередная цель и цикл повторяется, начиная с задачи "преобразовать A в С". В целом стратегия ОРЗ осуществляет обратный поиск - от заданной цели В к требуемому средству ее достижения С, используя редукцию исходной задачи <A, В> к задачам <A, С> и <С, В>.

Заметим, что в ОРЗ молчаливо предполагается независимость различий друг от друга, откуда следует гарантия, что уменьшение одних различий не приведет к увеличению других.

3. Планирование с помощью логического вывода. Такое планирование предполагает: описание состояний в виде правильно построенных формул (ППФ) некоторого логического исчисления, описание операторов в виде либо ППФ, либо правил перевода одних ППФ в другие. Представление операторов в виде ППФ позволяет создавать дедуктивные методы планирования, представление операторов в виде правил перевода - методы планирования с элементами дедуктивного вывода.

 

– Конец работы –

Эта тема принадлежит разделу:

Искусственный интеллект

На сайте allrefs.net читайте: "Цель преподавания дисциплины искусственный интеллект"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Эвристический (упорядоченный) поиск

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Цель преподавания дисциплины
В современном мире прогресс производительности программиста практически достигается только в тех случаях, когда часть интеллектуальной нагрузки берут на себя компьютеры. Одним из способов достигнут

Терминология
Термин интеллект (intelligence) происходит от латинского intellectus — что означает ум, рассудок, разум; мыслительные способности человека. Соответственно искусственный интеллект (artificial intell

Философские аспекты проблемы систем ИИ (возможность существования, безопасность, полезность).
С курсом "Основы проектирования систем ИИ" сложилась ситуация, которая роднит его с коммунизмом — изучается то, чего еще нет. И если этого не будет в течение ближайших 100 лет, то очень м

История развития систем ИИ.
Исторически сложились три основных направления в моделировании ИИ. В рамках первого подхода объектом исследований являются структура и механизмы работы мозга человека, а конечная цель закл

Искусственный нейрон
Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другог

Активационные функции
Сигнал NET далее, как правило, преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией OUT =K(

Формальные модели представления знаний.
Система ИИ в определенном смысле моделирует интеллектуальную деятельность человека и, в частности, - логику его рассуждений. В грубо упрощенной форме наши логические построения при этом сводятся к

Неформальные (семантические) модели представления знаний.
1. Сетевые модели (Семантические сети). В основе моделей этого типа лежит конструкция, названная семантической сетью. Сетевые модели формально можно задать в виде H

Приобретение знаний.
После идентификации проблемной области очерчивается круг знаний которые должны быть переданы ИИС. Ввод в базу знаний объективизированных знаний не представляет особой проблемы, выявление и

Подготовительный этап
1. Четкое определение задач проектируемой системы (сужение поля знаний): определение, что на входе и выходе; определение режима работ, консультации, обучение и др. 2. Выбор экспертов: опре

Основной этап
1. "Накачка" поля знаний: а) в зависимости от предметной области выбор способа интервьюирования; б) протоколирование мыслей вслух или запись на магнитофон рассуждении эксперта (аналитик п

Способы формализации задач. Представление задач в пространстве состояний
Типичным представителем класса задач, для которых подходит представление (формализация) в пространстве состояний, является головоломка, известная как игра в пятнадцать. В ней используется пятнадцат

Слепой перебор.
Двумя основными разновидностями слепого перебора являются алгоритмы перебора вширь и перебора вглубь. В алгоритме перебора вширь вершины раскрываются в том порядке, в котором они строятся.

Деревья игры. Поиск выигрышной стратегии
Будем рассматривать класс игр двух лиц с полной информацией. В таких играх участвуют два игрока, которые поочередно делают свои ходы. В любой момент игры каждому игроку изве

Минимаксная процедура
С целью поиска достаточно хорошего первого хода просматривается обычно часть игрового дерева, построенного от заданной конфигурации. Для этого применяется один из переборных алгоритмов (в глубину,

Альфа-бета процедура
Минимаксная процедура организована таким образом, что процесс построения частичного дерева игры отделен от процесса оценивания вершин. Такое разделение приводит к тому, что в целом минимаксная проц

Тимофей Струнков
В этой статье мы продолжим тему имитации биологических процессов и познакомим

Эволюционная теория
Как известно, эволюционная теория утверждает, что жизнь на нашей планете возникла вначале лишь в простейших ее формах — в виде одноклеточных организмов. Эти формы постепенно усложнялись, присп

Естественный отбор и генетическое наследование
Ключевую роль в эволюционной теории играет естественный отбор. Его суть состоит в том, что наиболее приспособленные особи лучше выживают и приносят больше потомства, чем менее приспособленные.

Задачи оптимизации
Как уже было отмечено выше, эволюция — это процесс постоянной оптимизации биологических видов. Теперь мы в состоянии понять, как происходит этот процесс. Естественный отбор гарантирует, что на

Работа генетического алгоритма
Представим себе искусственный мир, населенный множеством существ (особей), причем каждое существо — это некоторое решение нашей задачи. Будем считать особь тем более приспособленной, чем лучше

Применение генетических алгоритмов
Чтобы использовать генетический алгоритм для решения практических задач, необходимо рассматривать более сложные варианты введенных выше понятий. Поясним это на примере задачи коммивояжера для

Понятие образа
Образ, класс — классификационная группировка в системе классификации, объединяющая (выделяющая) определенную группу объектов по некоторому признаку. Образное восприятие мира — одно из зага

Геометрический и структурный подходы.
Каждый раз, когда сталкиваются с незнакомыми задачами, появляется естественное желание представить их в виде некоторой легко понимаемой модели, которая позволяла бы осмыслить задачу в таких термина

Гипотеза компактности
Если предположить, что в процессе обучения пространство признаков формируется исходя из задуманной классификации, то тогда можно надеяться, что задание пространства признаков само по себе задает св

Обучение и самообучение. Адаптация и обучение
Все картинки, представленные на Рис. 1, характеризуют задачу обучения. В каждой из этих задач задается несколько примеров (обучающая последовательность) правильно решенных задач. Если бы удалось по

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги