рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Патенты и лицензии

Патенты и лицензии - раздел Компьютеры, Часть III Криптографические алгоритмы Idea Запатентован В Европе И Соединенных Штатах [1012, 1013]. Патент Принадле...

IDEA запатентован в Европе и Соединенных Штатах [1012, 1013]. Патент принадлежит Ascom-Tech AG. Для некоммерческого использования лицензирование не нужно. При заинтересованности в лицензии для ко м-мерческого применения алгоритма следует обратиться по адресу Ascom Systec AG, Dept CMW, Cewerbepark, CH-5506, Mgenwil, Switzerland; +41 64 56 59 83; Fax: +41 64 56 59 90; idea@ascom.ch.

13.10 MMB

Недовольство использованием в IDEA 64-битового блока шифрования привело к созданию Джоном Дэйм о-ном алгоритма под названием MMB (Modular Multiplication-based Block cipher, модульный блочный шифр, и с-пользующий умножения) [385, 405, 406]. В основе ММВ лежит теория, используемая и в IDEA: перемешива то­щие операции из различных групп. ММВ - это итеративный алгоритм, главным образом состоящий из лине й-ных действий (XOR и использование ключа) и параллельное использование четырех больших нелинейных и з-меняющих обычный порядок подстановок. Эти подстановки определяются с помощью умножения по модулю 232-1 с постоянными множителями. Результатом применения этих действий является алгоритм, использующий и 128-битовый ключ и 128-битовый блок.

ММВ оперирует 32-битовыми подблоками текста (х0, хь х2, х3) и 32-битовыми подблоками ключа 0, ки к2, к3). Это делает удобным реализацию алгоритма на современных 32-битовых процессорах. Чередуясь с XOR, шесть раз используется нелинейная функция f. Вот этот алгоритм (все операции с индексами выполняются по модулю 3):

х, = х, © к„ для i = 0 до 3

1 Предупреждение покупателю


f(x0, хь x2, x3)

х,-=х,-©£ж,дляг = ОдоЗ

f(x0, xu x2, x3)

x, = x, © £,+2, для i = О до 3

f(x0, xb x2, x3)

x, = x, © А:,, для i = О до 3

f(x0, xb x2, x3)

x,■= x,■© £ж, для i = О до 3

f(x0, xb x2, x3)

x, = x, © £,+2, для i = О до 3

f(x0, xb x2, x3)

У функции f три этапа:

(1) xj = с,■ * х„ для г = 0 до 3 (Если на входе умножения одни единицы, то на выходе - тоже одни единицы.)

(2) Если младший значащий бит х0 1, то х0 х0 © С. Если младший значащий бит х3 О, то х3 х3 © С.

(3) х, = х,ч © х, © хж, для г = 0 до 3

Все операции с индексами выполняются по модулю 3. Операция умножения на этапе (1) выполняется по м о-дулю 232-1. В данном алгоритме если второй операнд - это 232-1, то результат также равен 232-1. В алгоритме используются следующие константы:

С= 2ааааааа

со = 025flcdb

ci = 2 * со

с2= 23 * со

с3 = 27 * со

Константа С - это "простейшая" константа с высоким троичным весом, нулевым младшим значащим битом и без круговой симметрии. У константы сО несколько иные характеристики. Константы с ь с2 и с3 являются сме­щенными версиями со, и используются для предотвращения вскрытий основанных на симметрии. Подробности можно найти в [405].

Дешифрирование является обратным процессом. Этапы (2) и (3) заменяются на свою инверсию. На этапе (1) вместо с,"1 используется с„ с,"1 = 0dad4694.

Безопасность ММВ

Схема ММВ обеспечивает на каждом этапе значительное и независимое от ключа рассеяние. В IDEA pa c-сеяние до определенной степени зависит от конкретных подключей. В отличие от IDEA у ММВ нет слабых ключей.

К сожалению ММВ - это умерший алгоритм [402]. Это утверждение справедливо по многим причинам, хотя криптоанализ ММВ и не был опубликован. Во первых, он проектировался без учета требований устойчивости к линейному криптоанализу. Выбор мультипликативных множителей обеспечил устойчивость к дифференциал ь-ному криптоанализу, но о линейном криптоанализе авторам алгоритма было еще неизвестно.

Во вторых, Эли Бихам реализовал эффективное вскрытие с выбранным ключом [160], использующеее тот факт, что все этапы идентичны, а ключ при использовании просто циклически сдвигается на 32 бита. В третьих, несмотря на то, что программные реализации ММВ были бы очень эффективны, в аппаратном исполнении а л-горитм менее эффективен, чем DES.

Дэймон предлагает, что тот, кто захочет улучшить ММВ, должен сначала проанализировать умножение по модулю с помощью линейного криптоанализа и подобрать новый множитель, а затем сделать константу С ра з-личной для каждого этапа [402]. Затем, улучшив использование ключа, добавляя к ключам этапов константы с целью устранения смещения. Но сам не стал заниматься этим и разработал З-Way (см. раздел 14.5).


13.11 CA-1.1

СА - это блочный шифр, основанный на клеточных автоматах и разработанный Говардом Гутовицом (Howard Gutowitz) [677, 678, 679]. Он шифрует 384-битовые блоки открытого текста 1088-битовым ключом (на самом деле используется два ключа - 1024-битовый и 64- битовый). Из-за природы клеточных автоматов алг о-ритм наиболее эффективен при реализации в больших параллельных интегрированных схемах.

СА-1.1 использует как обратимые, так и необратимые правила клеточного автомата. При обратимом прав и-ле каждое состояние структуры получается из единственного предшествующего состояния, а при необратимом правиле у каждого состояния может быть несколько предшественников. При шифровании необратимые правила пошагово обращаются во времени. Для продвижения обратно от текущего состояния случайным образом дол ж-но выбираться одно из состояний-предшественников. Этот процесс многократно повторяется. Таким образом, обратная итерация служит для смешивания случайной информации с инфорамацией сообщения. СА-1.1 испол ь-зует особый сорт частично линейного необратимого правила, такого, что для любого данного состояния может быть быстро построено случайное состояние-предшественник. На некоторых стадиях шифрования используются и обратимые правила.

Обратимые правила (простые параллельные перестановки подблоков состояния) нелинейны. Необратимые правила полностью определяются ключом, а обратимые зависят как от ключа, так и от случайной информации, вставленной в ходе шифрования необратимыми правилами.

СА-1.1 основан на структуре блочных связей. То есть, обработка блока сообщения частично отделена от о б-работки потока случайной информации, вставленной при шифровании. Эта случайная информация служит для связи друг с другом стадий шифрования. Она также может быть использована для связи с потоком шифроте к-ста. Информация связи генерируется как часть шифрования.

Так как СА-1.1 представляет собой новый алгоритм, слишком рано делать какие-либо заявления о его без о-пасности. Гутовиц упоминает некоторые возможные вскрытия, включая дифференциальный криптоанализ, но ему не удалось вскрыть алгоритм. В качестве стимула Гутовиц предложил награду в 1000 долларов для "первого человека, который разработает доступную процедуру вскрытия СА-1.1."

СА-1.1 запатентован [678], но доступен для некоммерческого использования. При необходимости получить лицензию на алгоритм или объявленную награду за криптоанализ обращайтесь к Говарду Гутовицу по адресу Howard Cutowitz, ESPCI, Laboratorie d'Electronique, 10 rue Vauquelin, 75005 Paris, France.

13.12 SKIPJACK

Skipjack разработан NSA в качестве алгоритма шифрования для микросхем Clipper и Capstone (см. разделы 24.16 и 24.17). Так как этот алгоритм объявлен секретным, его подробности никогда не публиковались. Он б у-дет реализован только как защищенная от взлома аппаратура.

Этот алгоритм объявлен секретным не потому, что это повышает его надежность, а потому что NSA не х о-чет, чтобы Skipjack использовался без механизма условного вручения ключей Clipper. Агентство не хочет, чт о-бы программные реализации алгоритма распространились по всему миру.

Безопасен ли Skipjack? Если NSA захочет создать безопасный алгоритм, оно, скорее всего, это сделает. С другой стороны, если NSA захочет создать алгоритм с лазейкой, то оно сможет сделать и это. Вот что было опубликовано [1154, 462].

— Это итеративный блочный шифр.

— Размер блока - 64 бита.

— Алгоритм использует 80-битовый ключ.

— Он может быть использован в режимах ЕСВ, СВС, 64-битовый OFB, либо 1-, 8-, 16-, 32- или 64-битовый CFB.

— Операция шифрования или дешифрирования состоит из 32 этапов.

— NSA начало работу над ним в 1985 и завершило проверку в 1990.

В документации на микросхему Mykotronx Clipper утверждается, что задержка в выдаче результата, прис у-щая алгоритму Skipjack, составляет 64 такта. Это означает, что на каждый этап приходится два такта: один предположительно для подстановки с помощью S-блока, а другой - для заключительного XOR в конце каждого этапа. (Не забывайте, перестановки при аппаратных реализациях не занимают времени.) В документации Mykotronx эта двухтактная операция называется "G-блоком", а все вместе - "сдвигом". (Часть G-блока носит название "F-таблицы" и является таблицей констант, а может быть таблицей функций.)

По одним слухам Skipjack использует 16 S-блоков, а по другим для хранения S-блоков нужно всего 128 байт


памяти. Непохоже, чтобы оба этих слуха были правдой.

Еще один слух утверждает, что этапы Skipjack, в отличие от DES, работают не с половиной блока. Это вм е-сте с замечанием о "сдвигах" и случайном заявлении на Crypto '94 о том, что в Skipjack применяется "48-битовая внутренняя структура", позволяет сделать вывод, что алгоритм по своей схеме похож на SHA (см. ра з-дел 18.7), но использует четыре 16-битовых подблока. Три подблока, обработанные зависящей от ключа одн о-направленной функцией, дают 16 битов, которые подвергаются операции XOR с оставшимся подблоком. Затем весь блок циклически сдвигается на 16 битов и поступает на вход следующего этапа, или сдвига. При этом та к-же используются 128 байтов данных S-блока. Я подозреваю, что S-блоки зависят от ключа.

По своей структуре Skipjack вероятно похож на DES. NSA понимает, что его защищенная от взлома аппар а-тура в конце концов будет вскрыта и исследована, они не будут рисковать никакими передовыми криптограф и-ческими методами.

То, что NSA планирует использовать алгоритм Skipjack для шифрования своей Системы защиты сообщений (Defense Messaging System, DMS), свидетельствует о безопасности алгоритма. Чтобы убедить скептиков, NIST разрешил комиссии "уважаемых неправительственных экспертов . . . получить доступ к конфиденциальным подробностям алгоритма, чтобы они исследовали его возможности и опубликовали результаты своих исслед о-ваний" [812].

В предварительном отчете этой комиссии экспертов [262] (окончательного отчета не было, и возможно ник о-гда не будет) сообщалось:

Принимая во внимание, что стоимость вычислительных мощностей уменьшается в два раза каждые 18 месяцев, ело ле­ность вскрытия Skipjack сравняется с сегодняшней сложностью вскрытия DES только через 36 лет. Следовательно, риск, что Skipjack будет взломан в ближайшие 30-40 лет, незначителен.

Незначителен и риск взлома Skipjack с помощью более быстрых способов вскрытия, включая дифференциальный кри п-тоанализ. У алгоритма не слабых ключей, отсутствует и свойство комплиментарное™. Эксперты в отсутствие времени для самостоятельного большого исследования алгоритма изучили представленное NSA описание разработки и проверки алг о-ритма

Устойчивость Skipjack к криптоанализу не зависит от хранения в тайне самого алгоритма.

Итак, участники дискуссии не смогли поработать с алгоритмом достаточно долго, чтобы прийти к каким-нибудь выводам самостоятельно. Все, что они смогли сделать - это взглянуть на результаты, показанные им

NSA.

Остался без ответа вопрос, является ли плоским пространство ключей Skipjack (см. раздел 8.2). Даже если у Skipjack нет ключей, слабых в смысле DES, ряд особенностей процесса использования ключа может сделать одни ключи сильнее других. У Skipjack может быть 270 сильных ключей, гораздо больше чем у DES, вероят­ность случайно выбрать один из этих сильных ключей будет приблизительно 1 к 1000. Лично я думаю, что пр о-странство ключей Skipjack - плоское, но то, что об этом никто не заявил публично, вызывает тревогу.

Skipjack запатентован, но в соответствии с соглашением о секретности патента [1122] этот патент хранится в тайне. Патент будет опубликован тогда и только тогда, когда алгоритм Skipjack будет успешно восстановлен кем-то посторонним. Это дает возможность правительству воспользоваться и преимуществом защиты патентом, и преимуществом конфеденциальности торгового секрета.


– Конец работы –

Эта тема принадлежит разделу:

Часть III Криптографические алгоритмы

На сайте allrefs.net читайте: Часть III Криптографические алгоритмы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Патенты и лицензии

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Энтропия и неопределенность
Теория информации определяет количество информациив сообщении как минимальное количество бит, необходимое для кодирования всех возможных значений сообщения, считая все сообщения ра

Норма языка
Для данного языка норма языкаравна г =H(M)/N где N - это длина сообщения. При больших N норма обычного английского яз

Зашифрованного алгоритмами с различной длиной ключа
Длина ключа (в битах) Расстояние уникальности (в символах)   5.9 8.2

Практическое использование теории информации
Хотя эти понятия имеют большое теоретическое значение, реальный криптоанализ использует их достаточно редко. Расстояние уникальности гарантирует ненадежность системы, если оно слишком мало, но его

Путаница и диффузия
Двумя основными методами маскировки избыточности открытого текста сообщения, согласно Шеннону, служат путаница и диффузия [1432]. Путаницамаскирует связь между открытым те

Сложность проблем
Теория сложности также классифицирует и сложность самих проблем, а не только сложность конкретных алгоритмов решения проблемы. (Отличным введением в эту тему являются [600, 211, 1226], см. также [1

Арифметика вычетов
Вы все учили математику вычетов в школе. Иногда ее называли "арифметикой часов". Если Милдред сказ а-ла, что она будет дома к 10:00, и опоздала на 13 часов, то когда она придет домой, и н

Простые числа
Простым называется целое число, большее единицы, единственными множителями которого является 1 и оно само: оно не делится ни на одно другое число. Два - это простое число. Простыми являются и 73, 2

Наибольший общий делитель
Два числа называются взаимно простыми,если у них нет общих множителей кроме 1. Иными словами, е с-ли наибольший общий делительа и п равен 1. Это записываетс

Обратные значения по модулю
Помните, что такое обратные значения? Обратное значение для 4 - 1/4, потому что 4*1/4 =1. В мире вычетов проблема усложняется: 4*х = 1 (mod 7) Это уравнение эквивалентно об

Квадратичные вычеты
Если/; - простое число, и а больше 0, но меньше р, то а представляет собой квадратичный вычет по модулю р, если х2 = a (mod/;), для некоторых

Символ Лежандра
Символ Лежандра, Ца,р), определен, если а - это любое целое число, а р - простое число, большее, чем 2. Он равен 0, 1 или-1. Ца,р) = 0, если а делится на р.

Символ Якоби
Символ Якоби, ](а,п), представляет собой обобщение символа Лежандра на составные модули, он определ я-ется для любого целого а и любого нечетного целого п. Функция удобна при п

Генераторы
Если р - простое число, и g меньше, чем р, то g называется генераторомпо модулю р, если для каждого числа Ъ от 1 тр - 1 существует

Квадратные корни по модулю п
Если п - произведение двух простых чисел, то возможность вычислить квадратные корни по модулю п вы­числительно эквивалентна возможности разложить число п на множители [1283, 35

Solovay-Strassen
Роберт Соловэй (Robert Solovay) и Фолькер Штрассен (Volker Strassen) разработали алгоритм вероятностной проверки простоты числа [1490]. Для проверки простоты числа р этот алгоритм использует

Lehmann
Другой, более простой тест был независимо разработан Леманном (Lehmann) [903]. Вот последовательность действий при проверке простоты числа р: (1) Выберите случайно число а, м

Rabin-Miller
Повсеместно используемым является простой алгоритм, разработанный Майклом Рабином (Michael Rabin), частично основанным на идеях Гэри Миллера [1093, 1284]. По сути, это упрощенная версия алгоритма,

Практические соображения
В реальных приложениях генерация простых чисел происходит быстро. (1) Сгенерируйте случайное и-битовое число/;. (2) Установите старший и младший биты равными 1. (Старший бит гаран

Сильные простые числа
Если п - произведение двух простых чисел, р и q, то может понадобиться использовать в качестве р и q сильные простые числа.Такие простые числа об

Вычисление дискретных логарифмов в конечной группе
Криптографы интересуются дискретными логарифмами следующих трех групп: — Мультипликативная группа полей простых чисел: G¥(p) — Мультипликативная группа конечных полей с

Разработка стандарта
В начале 70-х годов невоенные криптографические исследования были крайне редки. В этой области почти не публиковалось исследовательских работ. Большинство людей знали, что для своих коммуникаций во

Принятие стандарта
Американский национальный институт стандартов (American National Standards Institute, ANSI) одобрил DES в качестве стандарта для частного сектора в 1981 году (ANSI X3.92.) [50], назвав его Алгоритм

Проверка и сертификация оборудования DES
Частью стандарта DES является проверка NIST реализаций DES. Эта проверка подтверждает, что реализ а-ция соответствует стандарту. До 1994 года NIST проверял только аппаратные и программно-аппаратные

Заключительная перестановка
Заключительная перестановка является обратной по отношению к начальной перестановки и описана в 4-й. Обратите внимание, что левая и правая половины не меняются местами после последнего этапа DES, в

Дешифрирование DES
После всех подстановок, перестановок, операций XOR и циклических сдвигов можно подумать, что алг о-ритм дешифрирования, резко отличаясь от алгоритма шифрования, точно также запутан. Напротив, разли

Режимы DES
FIPS PUB 81 определяет четыре режима работы: ЕСВ, СВС, OFB и CFB (см. главу 9) [1143]. Банковские стандарты ANSI определяют для шифрования ЕСВ и СВС, а для проверки подлинности - СВС и n-битовый CF

Аппаратные и программные реализации DES
Об эффективных аппаратных и программных реализациях алгоритма много писалось [997, 81, 533, 534, 437, 738, 1573, 176, 271, 1572]. Утверждается, что самой быстрой является микросхема DES, разработан

Ключи-дополнения
Выполним побитное дополнение ключа, заменяя все 0 на 1 и все 1 - на 0. Теперь, если блок открытого текста зашифрован оригинальным ключом, то дополнение ключа при шифровании превратит дополнение бло

Алгебраическая структура
Все возможные 64-битовые блоки открытого текста можно отобразить на 64-битовые блоки шифротекста 264! Различными способами. Алгоритм DES, используя 56-битовый ключ, предост

Количество этапов
Почему 16 этапов? Почему не 32? После пяти этапов каждый бит шифротекста является функцией всех б и-тов открытого текста и всех битов ключа [1078, 1080], а после восьми этапов шифротекст по сути пр

Проектирование S-блоков
Помимо уменьшения длины ключа NSA также обвиняют в изменении содержания S-блоков. Настаивая на подтверждении схемы S-блоков, NSA заявило, что детали алгоритма являются "чувствительными" и

Дополнительные результаты
Были предприняты и другие попытки криптоанализировать DES. Один из криптографов искал закономерн о-сти, используя спектральные тесты [559]. Другие анализировали последовательность линейных множител

Дифференциальный криптоанализ
В1990 году Эли Бихам и Ади Шамир ввели понятие дифференциального криптоанализа[167, 168, 171, 172]. Это был новый, ранее неизвестный метод криптоанализа. Используя

Криптоанализ со связанными ключами
В 9-й показано количество битов, на которые циклически смещается ключ DES на каждом этапе: на 2 бита на каждом этапе, кроме этапов 1, 2, 9 и 16, когда ключ сдвигается на 1 бит. Почему?

Линейный криптоанализ
Линейный криптоанализпредставляет собой другой тип криптоаналитического вскрытия, изобретенный Мицуру Мацуи (Mitsura Matsui) [1016, 1015, 1017]. Это вскрытие использует линейные пр

Дальнейшие направления
Был предпринят ряд попыток расширить концепцию дифференциального криптоанализа на дифференциалы более высоких порядков [702, 161, 927, 858, 860]. Ларе Кнудсен (Lars Knudsen) использует нечто, назыв

Многократный DES
В ряде реализаций DES используется трехкратный DES (см. 2-й) [55]. Так как DES e является группой, по­лученный шифротекст гораздо сложнее вскрыть, используя исчерпывающий поиск: 2 112 по

Обобщенный DES
Обобщенный DES (Generalized DES, GDES) был спроектирован для ускорения DES и повышения устойч и-вости алгоритма [1381, 1382]. Общий размер блока увеличился, а количество вычислений осталось неизме

MADRYGA
В.Е. Мадрига (W. E. Madryga) предложил этот блочный алгоритм в 1984 году [999]. Он может быть эффе к-тивно реализован как программа: в нем нет надоедливых перестановок, и все операции выполняются н

Описание Madryga
Madryga состоит из двух вложенных циклов. Внешний цикл повторяется восемь раз (но это количество м о-жет быть увеличено для повышения) и содержит применение внутреннего цикла к открытому тексту. Вн

Криптоанализ и Madryga
Исследователи из Технического университета в Квинсланде (Queensland University of Technology) [675] и с-следовали Madryga вместе с некоторыми другими блочными шифрами. Они обнаружили, что в этом ал

Описание FEAL
На 10-й представлена блок-схема одного этапа FEAL. В качестве входа процесса шифрования используется 64-битовый блок открытого текста. Сначала блок данных подвергается операции XOR с 64 битами ключ

Криптоанализ FEAL
Успешный криптоанализ FEAL-4, FEAL с четырьмя этапами, был выполнен с помощью вскрытия с выбра н-ными открытыми текстами [201], а позже слабость этого алгоритма была показана в [1132]. Последнее вс

Патенты
FEAL запатентован в Соединенных Штатах [1438], соответствующие патенты приняты к рассмотрению в Англии, Франции и Германии. Желающий лицензировать использование алгоритма должен связаться с Дера п-

REDOC III
REDOC представляет собой упрощенную версию REDOC II, также разработанную Майклом Вудом [1615]. Он работает с 80-битовым блоком. Длина ключа может меняться и достигать 2560 байтов (20480 битов). Алг

Описание LOKI91
Механизм LOKI91 похож на DES (см. Рис. 13-8). Блок данных делится на левую и правую половины и пр о-ходит через 16 этапов, что очень походе на DES. На каждом этапе правая половина сначала подвергае

Криптоанализ LOKI91
Кнудсен предпринял попытку криптоанализа LOKI91 [854, 858], но нашел, что этот алгоритм устойчив к дифференциальному криптоанализу. Однако ему удалось обнаружить, что вскрытие со связанными ключами

Патенты и лицензии
LOKI не запатентован. Кто угодно может реализовать алгоритм и использовать его. Исходный код, прив е-денный в этой книге, написан в Университете Нового Южного Уэльса. При желании использовать эту р

KHUFU и KHAFRE
В 1990 году Ральф Меркл (Ralph Merkle) предложил два алгоритма. В основе их проектирования лежали следующие принципы [1071]: 1. 56-битовый размер ключа DES слишком мал. Так как стоимость у

Патенты
И Khufu, и Khafre запатентованы [1072]. Исходный код этих алгоритмов содержится в патенте. При желании получить лицензию на любой или оба алгоритма следует обратиться к директору по лицензированию

Скорость IDEA
Современные программные реализации IDEA примерно в два раза быстрее, чем DES. На компьютере с i386/33 МГц IDEA шифрует данные со скоростью 880 Кбит/с, а на компьютере с i486/33 МГц - со скоростью 2

Криптоанализ IDEA
Длина ключа IDEA равна 128 битам - более чем в два раза длиннее ключа DES. При условии, что наиболее эффективным является вскрытие грубой силой, для вскрытия ключа потребуется 2 128 (10

Описание ГОСТ
ГОСТ является 64-битовым алгоритмом с 256-битовым ключом. ГОСТ также использует дополнительный ключ, который рассматривается ниже. В процессе работы алгоритма на 32 этапах последовательно выполняет

Криптоанализ ГОСТ
Вот главные различия между DES и COST. — DES использует сложную процедуру для генерации подключей из ключей. В ГОСТ эта процедура очень проста. — В DES 56-битовый ключ, а в ГОСТ -

BLOWFISH
Blowfish - это алгоритм, разработанный лично мной для реализации на больших микропроцессорах [1388, 1389]. Алгоритм незапатентован, и его код на языке С приведен в конце этой книги для широкого пол

Безопасность Blowfish
Серж Воденэ (Serge Vaudenay) исследовал Blowfish с известными S-блоками и г этапами, дифференциал ь-ный криптоанализ может раскрыть Р-массив с помощью 2 8Ж выбранных открытых текстов [15

Описание SAFER K-64
Блок открытого текста делится на восемь байтовых подблоков: Въ В2, . . . , Въ В%. Затем подблоки обрабаты­ваются в ходе г этапов. Наконец подблоки

SAFER K-128
Этот альтернативный способ использования ключа был разработан Министерством внутренних дел Синг а-пура, а затем был встроен Массеем в SAFER [1010]. В этом способе используются два ключа, Ка

Безопасность SAFER K-64
Массей показал, что SAFER K-64 после 6 этапов абсолютно защищен от дифференциального криптоанализа после 8 этапов и достаточно безопасен. Уже после 3 этапов против этого алгоритма становится неэффе

Описание S-Way
Этот алгоритм описать несложно. Для шифрования блока открытого текста х: For i = 0 to n - 1 х = х XOR Ki х = theta (х) х = pi - 1 (х) х = gamma (x) х = pi - 2

Сети Фейстела
Большинство блочных алгоритмов являются сетями Фейстела(Felstel networks). Эта идея датируется нача­лом 70-х годов [552, 553]. Возьмите блок длиной п и разделите его на две

Простые соотношения
DES обладает следующим свойством: если Е^Р) = С, то ЕК{РГ) = С, где Р', С" и К' - побитовые дополнения Р,СиК. Это свойство вдвое уменьш

Групповая структура
При изучении алгоритма возникает вопрос, не образует ли он группу. Элементами группы являются блоки шифротекста для каждого возможного ключа, а групповой операцией является композиция. Изучение гру

Устойчивость к дифференциальному и линейному криптоанализу
Исследование дифференциального и линейного криптоанализа значительно прояснило теорию проектиров а-ния хорошего блочного шифра. Авторы IDEA ввели понятие дифференциалов,обобщение о

Проектирование S-блоков
Сила большинства сетей Фейстела - и особенно их устойчивость к дифференциальному и линейному кри п-тоанализу - непосредственно связана с их S-блоками. Это явилось причиной потока исследований, что

Проектирование блочного шифра
Проектировать блочный шифр нетрудно. Если вы рассматривает 64-битовый блочный шифр как перестано в-ку 64-битовых чисел, ясно, что почти все эти перестановки безопасны. Трудность состоит в проектиро

Luby-Rackoff
Майкл Любы (Michael Luby) и Чарльз Ракофф (Charles Rackoff) показали, что Каш не является безопасным [992]. Рассмотрим два одноблочных сообщения: АВ и АС. Если криптоаналитику известн

Шифр краткого содержания сообщения
Шифр краткого содержания coo6nieHM(Message Digest Cipher, M DC), изобретенный Питером Гутманном (Peter Cutmann) [676], представляет собой способ превратить однонаправленные хэш-функции в

Безопасность шифров, основанных на однонаправленных хэш-функциях
Хотя эти конструкции и могут быть безопасными, они зависят от используемой однонаправленной хэш-функции. Хорошая однонаправленная хэш-функция не обязательно дает безопасный алгоритм шифрования. Сущ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги