рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Производительность

Производительность - раздел Компьютеры, Обзор компьютерных систем Рассмотрим Некоторые Параметры, Характеризующие Механизм Двухуровневой Памяти...

Рассмотрим некоторые параметры, характеризующие механизм двухуровневой Памяти. Сначала рассмотрим стоимость, которая выражается следующим образом:

 


(1.2.)

 


где

СS — средняя стоимость одного бита двухуровневой памяти,

C1 — средняя стоимость одного бита памяти верхнего уровня Ml,

С2 – средняя стоимость одного бита памяти нижнего уровня М2,

S1 — емкость Ml,

S2 — емкость М2.

Желательно добиться соотношения CS=C2. При условии С1>>С для этого требуется, чтобы выполнялось условие S1=S2. Получающаяся зависимость представлена на рис. 1.22.

 

 

Теперь рассмотрим время доступа. Для высокой производительности двух­уровневой памяти необходимо, чтобы TS=T1. Поскольку обычно T1<<T2, нуж­но, чтобы результативность поиска была близка к 1.

Таким образом, мы хотим, чтобы уровеньMl обладал малой емкостью (что позволило бы снизить стоимость), но был достаточно большим для того, чтобы повысить результативность поиска и, как следствие, производительность. Можно ли так подобрать размер Ml. чтобы в определенной степени он удовлетворял обоим требованиям? Этот вопрос можно разбить на несколько подвопросов.

· Какая результативность поиска удовлетворяет требованиям производитель­ности?

· Какая емкостьMl даст гарантию достижения требуемой результативности поиска?

· Будет ли эта емкость иметь приемлемую стоимость?

Чтобы ответить на эти вопросы, рассмотрим, величину T1/TS, которая называ­ется эффективностью доступа. Она является мерой того, насколько среднее время доступа TS отличается от времени доступа T1 к Ml. Из уравнения (1.1) находим

 

(1.3)

На рис. 1.23 представлен график зависимости T1/TS от результативности поиска Н при разных значениях параметра T2/T1. Обычно время доступа к кэшу в пять-десять раз меньше, чем время доступа к основной памяти (т.е. отношение T2/T1 лежит в пределах от 5 до 10), а время доступа к основной памяти приблизительно в 1000 раз меньше, чем время доступа к диску (T2/T1->1000). Таким образом, чтобы удовлетворить требованиям эффективности, величина результативности поиска должна находится в пределах от 0.8 до 0.9.

 

 

Теперь вопрос об относительной емкости памяти можно сформулировать более точно. Можно ли при условии S1=S2 добиться, чтобы результативность поиска достигала значения 0.8 или превышала его? Это зависит от нескольких факторов, в число которых входит вид используемого программного обеспечения и детали устройства двухуровневой памяти. Основное влия­ние, конечно, оказывает степень локализации. На рис. 1.24 показано,какое влияние оказывает локализация на результативность поиска. Очевидно, что если емкость уровня Ml равна емкости уровняМ2, то результативность по­иска будет 1.0, поскольку все содержимое М2 находится в Ml. Теперь пред­положим, что нет никакой локализации, т.е. все обращения происходят в случайном порядке. В этом случае результативность поиска линейно зависит от относительного размера памяти. Например, если объем Ml равен половине объема М2, то в любой момент времени на уровне Ml находится ровно поло­винавсех данных уровня М2, и результативность поиска равна 0.5. Однако на практике проявляется эффект локализации обращений. На графике пока­зано влияние локализации средней и сильной степени.


 

Таким образом, сильная локализация позволяет достичь высокой результативности поиска даже при сравнительно небольших объемах памяти верхнего уровня. Например, многочисленные исследования подтверждают, что при сравнительно небольшом размере кэша результативность поиска превышает 0.75, причем этот показатель не зависит от размера основной памяти (см., например, [AGAR89], [PRZY88], [STRE83] и [SMIT82]). В то время как типичный размер основной памяти в наши дни составляет многие мегабайты, вполне достаточным является кэш, емкость которого лежит в пре­делах от 1 до 128 Кбайт. При рассмотрении виртуальной памяти и дискового кэша можно сослаться на другие исследования, подтверждающие справедливость такого же утверждения, а именно — благодаря локализации относительно малый размер Ml обеспечивает высокую результативность поиска.

Теперь можно перейти к последнему из перечисленных ранее вопросов: удовлетворяет ли относительный размер двух уровней памяти требованиям стоимости? Ответ очевиден: да. Если для повышения производительности достаточно добавить верхний уровень сравнительно небольшой емкости, то средняя стоимость обоих уровней в расчете на один бит будет лишь немного превосходить стоимость бита более дешевой памяти второго уровня.

 

ПРИЛОЖЕНИЕ Б. УПРАВЛЕНИЕ ПРОЦЕДУРАМИ

Общепринятым методом осуществления управления вызовами процедур и возвратами из них является использование стека. В данном приложении приводится краткое описание свойств стека и его использования при работе процедур.

– Конец работы –

Эта тема принадлежит разделу:

Обзор компьютерных систем

Таблица Классы прерываний Программнное прерывание Прерывание по таймеру Прерывание... Прерывания в основном предназначены для повышения эффективности ра боты Например большинство устройств ввода вывода...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Производительность

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Обзор компьютерных систем
1.1. Основные элементы 1.2. Регистры процессора 1.3. Исполнение команд 1.4. Прерывания 1.5. Иерархия запоминающих устройств 1.6. Кэш 1.7. Техно

ОСНОВНЫЕ ЭЛЕМЕНТЫ
На макроуровне компьютер состоит из процессора, памяти и устройств вво­да-вывода; при этом каждый компонент представлен одним или несколькими модулями. Чтобы компьютер мог выполнять свое основное п

РЕГИСТРЫ ПРОЦЕССОРА
В процессоре имеется набор регистров, представляющих собой область па­мяти быстрого доступа» но намного меньшей емкости, чем основная память. Регистры процессора выполняют две функции.

Регистры, доступные пользователю
К доступным регистрам пользователь может обращаться с помощью команд машинного языка. К этим регистрам, как правило, имеют доступ все програм­мы — как приложения, так и системные. Обычно среди дост

Управляющие регистры и регистры состояния
Для контроля над работой процессора используются различные регистры. В большинстве машин эти регистры в основном не доступны пользователю. Неко­торые из них могут быть доступны для машинных команд,

ИСПОЛНЕНИЕ КОМАНД
Программа, которую выполняет процессор, состоит из набора хранящихся в памяти команд. В простейшем виде обработка команд проходит в две стадии: процессор считывает (выбирает) из памяти, а затем зап

Выборка и исполнение команды
В начале каждого цикла процессор выбирает из памяти команду. Обычно адрес ячейки, из которой нужно извлечь очередную команду, хранится в про­граммном счетчике (PC), Если не указано иное, после извл

Функции ввода-вывода
До сих пор мы рассматривали операции компьютера, управляемые процес­сором, основное внимание обращая на взаимодействие процессора и памяти. О роли компонентов ввода-вывода было упомянуто лишь вскол

Прерывания и цикл команды
Благодаря прерываниям во время выполнения операций ввода-вывода процес­сор может быть занят обработкой других команд. Рассмотрим ход процесса, пока­занный на рис. 1.5,б. Как и в предыдущем с

Множественные прерывания
До сих пор нами рассматривался случай возникновения одного прерывания. Представим себе ситуацию, когда может произойти несколько прерываний. На­пример, программа получает данные по коммуникационной

Многозадачность
  Бывает, что для эффективного использования процессора одних прерываний недостаточно. Обратимся, например, к рис. 1.9,6. Если время, которое требуется для выполнения операций ввода-в

ИЕРАРХИЯ ЗАПОМИНАЮЩИХ УСТРОЙСТВ
Конфигурация памяти компьютера в основном определяется тремя пара­метрами: объем, быстродействие, стоимость. Вопрос об объеме решить не так просто. Какой большой ни была бы па­мять, все ра

Обоснование
При выполнении каждого цикла команды процессор по крайней мере один раз обращается к памяти, чтобы произвести выборку команды. Часто это происходит повторно, причем возможны случаи нескольких повто

Принципы работы кэша
Кэш предназначен для того, чтобы приблизить скорость доступа к памяти к максимально возможной, и в то же время обеспечить большой объем памяти по цене более дешевых типов полупроводниковой памяти.

Внутреннее устройство кэша
В данной книге внутреннее устройство кэша подробно не рассматривается. В этом разделе кратко перечислены лишь основные его элементы. В дальнейшем читатель сможет убедиться, что при изучении устройс

Программируемый ввод-вывод
  Когда процессору при выполнении программы встречается команда, связанная с вводом-выводом, он выполняет ее, передавая соответствующие команды контроллеру ввода-вывода. При программи

Ввод-вывод с использованием прерываний
Проблема программируемого ввода-вывода состоит в том, что процессор должен долго ждать, пока контроллер ввода-вывода будет готов читать или при­нимать новые данные. Во время ожидания процессор долж

Прямой доступ к памяти
Хотя ввод-вывод, управляемый прерываниями, более эффективен, чем про­стой программируемый ввод-вывод, он все еще занимает много процессорного времени для передачи данных между памятью и контроллеро

Локализация
Основой для повышения производительности двухуровневой памяти являет­ся принцип локализации, о котором шла речь в разделе 1.5. Основной постулат состоит в том, что последовательные обращения к памя

Функционирование двухуровневой памяти
Принцип локализации может быть использован для разработки схемы двух­уровневой памяти. Память верхнего уровня (Ml) имеет меньшую емкость, она быст­рее, и каждый ее бит дороже по сравнению с памятью

Реализация стека
Стек — это упорядоченный набор элементов, причем при обращении к нему можно получить доступ лишь к одному из элементов. Этот элемент называется вершиной стека. Число элементов стека (его дли

Вызов процедуры и возврат из нее
Общепринятым методом управления вызовами процедур и возвратами из них является использование стека. При обработке вызова процессор помещает в стек адрес возврата. При возврате из проц

Реентерабельные процедуры
Реентерабельная (повторно входимая) процедура является весьма полезной концепцией, особенно успешно применяемой в многопользовательских и много­задачных системах. Реентерабельной называется процеду

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги