рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Устройства персонального компьютера

Устройства персонального компьютера - раздел Компьютеры, Принципы построения компьютера В Основе Компьютеров Классической Архитектуры Лежит Магист­рально-Мод...

В основе компьютеров классической архитектуры лежит магист­рально-модульный принцип. Согласно последнему ПК стро­ится из на­бора уст­ройств и блоков-модулей. Каждый модуль реали­зует ка­кую-либо закон­ченную функцию и обладает свойством неза­виси­мости от других модулей. Мо­дули объе­ди­ня­ются в не­обхо­ди­мую конфигура­цию ПК (компью­тер, как сборный конструктор, комплектуется из отдельных модулей, пред­став­ляющих логические узлы компьютера). Соедине­ние модулей про­изводят с помо­щью шин (электри­ческих це­пей) для передачи по ним сигна­лов (от­дельные модули соединены с процессором общей системной шиной - маги­ст­ралью). Сово­куп­ность шин, свя­зы­вающих два мо­дуля, и алгоритм, оп­реде­ляю­щий поря­док обмена информа­цией ме­жду ними, на­зыва­ется интерфейсом (interface от inter - между, и face - лицо). Ком­пьютерный ин­терфейс -это совокупность стандартных фи­зиче­ских, про­граммных и конст­рук­тивных средств, обеспечивающих объеди­не­ние различных компьютер­ных компо­нен­тов в единую систему.Фи­зиче­ские сред­ства обеспечи­вают совмес­тимость ам­плитудных и временных пара­метров элек­трических сигна­лов. Программ­ные сред­ства обеспечивают логиче­ские пра­вила и форматы обмена данными. Кон­струк­тивные средства – это, главным об­ра­зом, типы разъемов, обес­печи­вающих элек­трическую стыковку компонентов, а также стандарты на габа­ритно-установоч­ные размеры. Основные электронные ком­по­ненты, опреде­ляющие архитектуру (микро­процессор, постоянная и опера­тивная память, кэш-па­мять, ин­терфейс­ные схемы шин и др.), размещаются на основной плате компью­тера, ко­торая на­зывается систем­ной или мате­ринской, и кото­рая является основной в сис­темном блоке.

 

2.5.1. Процессор

Процессор (CPU) – это функционально за­кон­чен­ное программно-управляемое устройство обработки информации (выполнен­ное в виде одной или нескольких боль­ших или сверхбольших интегральных схем), центральная часть ПК, предназначенная для управления работой всех блоков ма­шины. В состав микропроцессора входят:

· устройство управления (УУ) - формирует и подает во все блоки машины в нуж­ные моменты времени определенные сигналы управления, обуслов­ленные спецификой выполняемой операции, а также формирует адреса ячеек па­мяти и передает эти адреса в соответст­вующие блоки ЭВМ;

· арифметико-логическое устройство (АЛУ) - предназначено для вы­пол­нения всех арифметических и логических операций над числовой и сим­воль­ной инфор­ма­цией (в некоторых моделях ПК для ускорения выполне­ния опе­раций к АЛУ подключа­ется дополнительный математический со­процессор);

· микропроцессорная память (МПП) - служит для кратковременного хра­нения, за­писи и выдачи информации, непосредственно используемой в вы­числениях (обес­пе­чивает высокое быстродействие машины);

· регистры- применяются для хранения различных адресов, признаков ре­зультатов выполнения операций, режимов работы ПК и др.;

· кэш-память- высокоскоростная память, позволяющая увеличить ско­рость вы­полнения операций;

· интерфейсная система микропроцессора - реализует сопряжение и связь с дру­гими устройствами ПК (включает в себя внутренний интерфейс МП, буфер­ные за­поминающие регистры и схемы управления портами ввода-вы­вода и сис­темной шиной).

Количество фирм, разрабатывающих и производящих процессоры для IBM-совместимых компьютеров, невелико. В настоящее время известны: In­tel, Cyrix, AMD и др.

Производительность CPU характеризуется следующими основными па­раметрами:

· степенью интеграции;

· тактовой частотой;

· внутренней и внешней разрядностью;

· памятью, к которой может адресоваться CPU.

Степень интеграции микросхемы показывает, сколько транзисторов (самый простой элемент любой микросхемы) может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизи­тельно 3 млн. на 3,5 кв.см, у Pentium Pro – 5 млн.

Тактовая частотауказывает, сколько элементарных операций (так­тов) микропроцессор выполняет за одну секунду (измеряется в МГц). Так­товая частота определяет быстродействие процессора.

Для процессора различают внутреннюю (собственную) тактовую час­тоту процессора (с таким быстродействием могут выполняться внутренние простейшие операции) и внешнюю (определяет скорость передачи данных по внешней шине).

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметиче­ских операций (в зависимости от поколения процессоров – от 8 до 32 би­тов).

Внешняя разрядность процессора определяет сколько битов одновре­менно он может принимать или передавать во внешние устройства (от 16 до 64 и более в современных процессорах).

Количество адресов ОЗУ, доступное процессору, определя­ется разряд­ностью адресной шины.

С бурным развитием мультимедиа-приложений перед разработчиками процессоров возникли проблемы увеличения скорости обработки огромных массивов данных, содержащих графическую, звуковую или видео информа­цию. В результате возникли дополнительно устанавливаемыеспециальные процессоры DSP, а затем появились разработанные на базе процессоров Pen­tium так называемые MMX-процессоры (первый из них – Pentium P55C).

Кроме того, к основным характеристикам процессора относят: ко­ли­че­ство регистров, систему команд, объем кэш-па­мяти.

В современных персональных компьютерах разных фирм применяются процессоры двух основных архитектур:

· МП типа CISC (Complex Instruction Set Computing) с полным набором ко­манд;

· МП типа RISC (Reduced Instruction Set Computing) с сокращенным набо­ром ко­манд;

Весь ряд процессоров фирмы Intel, устанавливаемых в персональные компьютеры IBM, имеют архитектуру CISC, а процессоры Motorola, исполь­зуемые фирмой Apple для своих персональных компьютеров, имеют архитек­туру RISC. Обе они имеют свои преимущества и недостатки. Так CISC-про­цессоры имеют обширный набор команд (до 400), из которых про­граммист может выбирать команду, наиболее подходящую в конкретном случае. Не­достатком этой архитектуры является то, что большой набор ко­манд услож­няет внутреннее устройство управления процессором, увеличи­вает время ис­полнения команды на микропрограммном уровне. Команды имеют различ­ную длину и время исполнении.

RISC-архитектура имеет ограниченный набор команд и каждая команда выполняется за один такт работы процессора. Небольшое число команд уп­рощает устройство управления процессора. К недостаткам RISC-архитектуры можно отнести то, что если требуемой команды в наборе нет, программист вынужден реализовать ее с помощью нескольких команд из имеющегося на­бора, увеличивая размер программного кода.

Напомним, что ЭВМ может иметь несколько процессоров. Мно­гопро­цессорные системы, ориентированные на достижение сверхбольших скоро­стей работы, со­дер­жат десятки или сотни сравнительно простых процес­соров с уп­рощенными блоками управления. Такие вычислительные системы, их спе­циали­зация на опре­деленном круге за­дач обеспечивают эффективное рас­парал­лели­вание вычисле­ний.

Контроллер -высокая скорость обработки информации процессором и медлен­ная работа устройств ввода-вывода (в большинстве своем содержа­щих ме­ханиче­ские движущиеся части) породило проблему малоэффективной работы ПК в целом (процессор вынужден про­стаивать в ожидании инфор­мации от внешних уст­ройств). Решением ее было освобождение централь­но­го процессора от функций обмена ин­формацией и передаче их специаль­ным электронным схемам управления работой внешних устройств - контрол­лерам внешних устройств. Контроллер можно рас­сматривать как специали­зированный процессор, управляющий работой соответст­вующего внешнего устройства по специальным встроенным программам. Примене­ние контрол­леров позволило использовать для связи между от­дельными функцио­наль­ными узлами ЭВМ принципиально но­вое устройство - общую шину, на­личие которой позволяет изменить организацию обме­на информацией между ОЗУ и внеш­ним устройством. Передача информации протекает под управлением кон­троллера без использования аппаратно-программных средств централь­ного про­цессора. Это, во-первых, повысило эффективность работы ПК в це­лом и, во-вторых, компьютер, созданный по такой схеме, легко пополнять но­выми устройствами. Дан­ное свойство называют открытостью архитектуры. Для пользователя открытая ар­хитектура оз­на­чает возможность свободно вы­бирать состав внешних устройств для своего ком­пь­ютера в зависимости от круга решаемых задач.

2.5.2. Системная шина

Системная шина - основная интерфейсная система компьютера, обес­печи­вающая сопряжение и связь всех его устройств между собой (она, на­ряду с процессором и запоминающим устройством, во многом определяет производительность работы компьютера). Важней­шими функ­циональными характеристиками системной шины являются: ко­личество обслужи­ваемых ею устройств и ее пропускная способность, т.е. максимально возможная ско­рость передачи информации. Пропускная спо­собность шины зависит от ее раз­рядности (есть шины 8-, 16-, 32- и 64-раз­рядные) и тактовой частоты, на кото­рой шина работает. Системная шина включает в себя:

· кодовую шину данных, содержащую провода и схемы сопряжения для па­рал­лельной передачи всех разрядов числового кода (машинного слова) опе­ранда;

· кодовую шину адреса, включающую провода и схемы сопряжения для па­рал­лельной передачи всех разрядов кода адреса ячейки основной па­мяти или порта ввода-вывода внешнего устройства;

· кодовую шину инструкций, содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов) во все блоки ма­шины;

· шину питания, имеющую провода и схемы сопряжения для подключения бло­ков ПК к системе энергопитания.

Существует несколько стандартов шин: шина PCI (Peripheral Component Interconnect bus), шина USB (Universal Serial BUS), шина SCSI (Small Computer System Interface) для соединения устройств различных классов – памяти, CD-ROM, принтеров, сканеров и т.д.

Системная шина обеспечивает три направления передачи информации:

1) между микропроцессором и основной памятью;

2) между микропроцессором и портами ввода-вывода внешних устройств;

3) между основной памятью и портами ввода-вывода внешних устройств (в ре­жиме прямого доступа к памяти).

Все блоки, а точнее их порты ввода-вывода, через соответствующие унифи­ци­ро­ван­ные разъемы подключаются к шине единообразно: непосредст­венно или через кон­троллеры (адаптеры). Управление системной шиной осущест­вляется мик­ропроцессором либо непосредственно, либо, что чаще, через допол­нительную мик­росхему - контроллер шины, формирующий основные сигналы управления.

Запоминающие устройства

Процессор
В компьютере имеются следующие виды памяти: регистровая КЭШ-па­мять (в переводе с английского означает «тай­ник»), основная память и внеш­няя па­мять.

 
 

 

 


Основная память (ОП) - предназначена для хранения и оперативного обмена ин­формацией со всеми блоками машины. ОП содержит два вида за­поминающих уст­ройств: постоянное запоминающее устройство - ПЗУ(ROM – Read Only Mem­ory) и оперативное за­поми­нающее устройство - ОЗУ(RAM - Random Access Memory - па­мять с произвольным доступом). ПЗУ служит для хранения неизме­няемой (посто­янной) программной и справоч­ной ин­формации, позволяет опера­тивно только счи­тывать хранящуюся в нем ин­формацию. ОЗУ предназначено для оперативной записи, хранения и считыва­ния ин­формации (про­грамм и данных), непосредственно участвую­щей в инфор­маци­онно-вычисли­тельном процессе, выполняемом ПК в теку­щий период вре­мени. Главными досто­ин­ствами оперативной памяти явля­ются ее высокое быст­родейст­вие и возмож­ность обраще­ния к каж­дой ячейке памяти отдельно (прямой адрес­ный доступ к ячейке). В каче­стве недостатка ОЗУ следует отметить невоз­мож­ность сохранения информации в ней после выключения пи­тания машины (энерго­зависимость). Объем ОЗУ обычно со­ставляет от 32 до 512 Мбайт, но иногда для сложных задач компьютерного ди­зайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ. Основная память имеет для ОЗУ и ПЗУ единое адресное про­странство.

В настоящее время в качестве оперативной памяти используются мо­дули DIMM, RIMM, SO-DIMM и SO-RIMM. Все они имеют разное количе­ство контактов. Модули SIMM сейчас встречаются только в старых моделях материнских плат, а им на смену пришли 168-контактные DIMM. Модули SO-DIMM и SO-RIMM, имеющие меньшее количество контактов, чем стан­дартные DIMM и RIMM, широко используются в портативных устройствах.

И, тем не менее, скорость работы ОЗУ ниже, чем быстродействие про­цес­сора, поэтому применяются различные методы для повышения ее произ­води­тельности. Для уменьшения влияния времени обращения процессора к ОЗУ и увеличения производительности компьютера дополнительно устанав­ливается сверхбыстродействующая буферная память, которая называется кэш-памятью.

КЭШ-память - представляет собой небольшой блок быстро­действую­щей, но дорогой памяти, которая располагается как бы «ме­жду» процессором и оперативной памятью. Запись в кэш-память осуществляется параллельно с запросом процессора к ОЗУ. Данные, выбираемые процессором, одновре­менно копируются и в кэш-память. Если процессор повторно обратиться к тем же данным, то они будут считаны уже из кэш-памяти. Такая же опера­ция происходит и при записи процессором данных в память. Они записыва­ются в кэш-память, а затем в интервалы, когда шина свободна, переписыва­ются в ОЗУ. Проще говоря, при обращении про­цес­сора к па­мяти сначала производится поиск нужных данных в КЭШ-памяти. По­скольку время дос­тупа к ней в несколько раз меньше, чем к обыч­ной памяти (а в большинстве слу­чаев необходимые микропроцессору данные содержатся в КЭШ-памяти), среднее время доступа к памяти уменьшается. Управление записью и считы­ванием данных в кэш-память выполняется автоматически. Когда кэш-память полностью заполняется, то для записи последующих дан­ных устройство управления кэш-памяти по специальному алгоритму автома­тически удаляет данные, которые реже всего использовались процессором на текущий мо­мент. Использование процессором кэш-памяти увеличивает про­изводитель­ность процессора.

Современные процессоры имеют встроенную кэш-память, которая на­ходится внутри процессора, кроме этого есть кэш-память и на системной плате. Чтобы их различать, кэш-память делится на уровни. На кристалле са­мого процессора находится кэш-память первого уровня, она имеет объем по­рядка 16-128 Кбайт и самую высокую скорость обмена данными. В корпусе процессора, но на отдельном кристалле находится кэш-память второго уровня, которая имеет объем порядка 256 Кбайт – 4 Мбайт. И, наконец, кэш-память третьего уровня, расположена на системной плате, ее объем может составлять 2-24 Мбайт. Заметим, что обмен данными с последней происхо­дит не на внутренней час­тоте МП, а на часто­те тактового генератора, которая обычно в 2 - 3 раза ниже, что сни­жает общее быстродейст­вие компьютера.

Внешняя память - относится к внешним устройствам ПК и использу­ется для долговременного хранения любой информации, которая может ко­гда-либо потре­бо­ваться для решения задач (целостность её содержимого не зависит от того, вклю­чен или выключен компьютер). В частности, во внеш­ней памяти хра­нится все про­граммное обеспечение компьютера. Внешняя память содержит разно­об­разные виды запоминающих устройств, но наиболее распространенными, имею­щимися практи­чески на любом компьютере, яв­ляются накопители на жестких (НЖМД) и гибких (НГМД) магнитных дис­ках. Назначение этих накопителей - хра­нение больших объ­емов информации, за­пись и выдача хранимой информации по за­просу в оперативное запоми­наю­щее устройство. В качестве устройств внеш­ней па­мяти используются также запоминающие устройства на кассетной магнит­ной ленте, накопители на оп­тических дисках и др.

Внешние запоминающие устройства весьма разнооб­разны. Их можно класси­фи­цировать по целому ряду признаков: по виду носи­теля, типу конст­рукции, по прин­ципу записи и считывания информации, методу дос­тупа и т.д. В зависимо­сти от типа носителя все ВЗУ можно подразделить на дис­ко­вые накопители и на­копи­тели на маг­нитной ленте. Накопители на дисках бы­вают:

· накопители на гибких магнитных дисках (флоппи-диски);

· накопители на жестких магнитных дисках типа «винчестер»;

· накопители на оптических компакт-дисках;

Магнитная запись в качестве запоминающей среды использует магнит­ные ма­териалы со специальны­ми свойствами (с прямоугольной петлей гис­терезиса), по­зво­ляющими фиксировать два маг­нитных состояния - два на­правления намагни­ченно­сти. Каждому из этих состояний соответствуют дво­ичные цифры: 0 и 1.

Исторически первыми магнитными носителями в машинах 1 и 2 поко­ления были магнитные ленты (цифровые магнитофоны) и магнитные бара­баны. Цифро­вой магнитофон представлял собой обычный мно­гоголовочный магнитофон, за­писы­вающий на широкую ленту. Магнитный ба­рабан - это цилиндр с магнитной поверх­ностью диаметром около полуметра и емкостью несколько десятков КБ. Еще один вид магнитной записи в ЭВМ 1 и 2 поко­ления - матрицы из маленьких (около 1 мм) магнитных колец, пере­магничи­вающихся под действием электриче­ского тока. Уже в ЭВМ 3-го поколения такой вид хранения информации перестал использоваться.

Наибо­лее распространенными внеш­ними запоминающими устройст­вами в ПК являются накопители на магнитных дисках (НМД). Диски бывают жесткими и гиб­кими, сменными и встроенными в ПК. Устройство для чтения и записи ин­фор­мации на магнитном диске называется дисководом.

Накопители на гибких магнитных дисках.

 

 

Гибкий диск (англ. floppy disk), или дискета, - носитель небольшого объ­ема ин­формации. Дискета состоит из круглой полимерной подложки, по­кры­той с обеих сторон магнитным окислом (являющим собой физическую ос­нову записи/считы­ва­ния) и помещенной в пластиковую упаковку. В упаковке сде­ланы с двух сторон ра­ди­альные про­рези, через которые головки за­писи/счи­тывания накопи­теля полу­чают доступ к диску. Информация записы­вается по концентрическим дорожкам (тре­кам), которые де­лятся на секторы. Количе­ство дорожек и секто­ров зависит от типа и формата дискеты. Сектор хранит ми­нимальную порцию ин­формации, кото­рая мо­жет быть записана на диск или счи­тана. Ёмкость сектора постоянна и состав­ляет обычно 512 бай­тов. Один или несколько смежных секторов дорожки составляют кластер. В на­стоящее время наибольшее распростра­нение получили дис­кеты со следую­щими характеристи­ками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, коли­чество секторов на дорожках 18. Дискета уста­навли­вается в накопитель на гиб­ких магнитных дис­ках (англ. floppy-disk drive), ав­томатиче­ски в нем фикси­руется, после чего ме­ханизм на­копителя раскручива­ется до час­тоты вращения 360 об/мин. За один оборот диска мо­жет быть считана информация с одной дорожки. Общее время доступа к ин­формации на диске складывается из времени перемещения головки на нуж­ную дорожку и времени оборота диска. Нако­питель связан с процессором че­рез контроллер гибких дисков.

Накопители на жестких магнит­ных дисках

 

 

Накопитель на жёстких магнитных дисках (HDD - Hard Disk Drive) или «вин­честер» используется для постоянного хранения информации - программ и дан­ных. В этих накопителях один или несколько жестких дисков (платте­ров), из­готов­ленных из сплавов алюминия или керамики (поверхности кото­рых по­крыты слоем маг­нитного материала), вместе с блоком магнит­ных го­ловок за­писи/считывания поме­щены в герметически закрытый корпус. Тер­мин винчестер возник из жаргонного на­звания первой модели жесткого диска ем­костью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секто­ров, что случайно совпало с ка­либ­ром «30/30» известного охотничьего ружья «Вин­честер». По сравнению с дисководами для гибких дисков винчестеры обла­дают рядом ценных преимуществ: объем хранимых данных неизмеримо больше (достигает сотен Гбайт), время доступа у винчестера на порядок меньше (все со­временные накопи­тели снабжа­ются встроенным кэшем, ко­торый существенно по­вы­шает их производительность). Единственный не­достаток: они не предназначены для переноса ин­формации на другие компь­ютеры (это касается стационарных, т.е. встраи­ваемых в корпус компью­тера винчестеров). В настоящее время существуют внешние винчестеры – External Hard Disc Drive, объемом до сотен Гбайт. Очень попу­лярны нако­пи­тели Flash, которые, как и внешние винче­стеры подключаются через USB-порт (они выпускаются объемом 32, 64, 128, 256, 512 Мбайт и более). Физи­ческие размеры винчестеров стандартизированы параметром, ко­торый назы­вают форм-фактором (form factor). Винче­стерский накопитель связан с про­цессором че­рез кон­троллер жесткого диска.

Накопители на оптических дисках.

 

Приводы компакт-дисков (CDD – Compact Disk Drive) необходимый ат­рибут современного компьютера. Благодаря маленьким размерам, боль­шой емкости и надежности эти накопители становятся все более и более популяр­ными. Существует несколько разновидностей оптических дисков:

· обычные CD, только для считывания, т.е. устройства ROM;

· CD-R – диски с возможностью однократной записи;

· CD-RW – диски с многократной перезаписью;

· DVD-ROM - только для считывания;

· DVD-R – с возможностью однократной записи;

· DVD-RW – с возможностью многократной перезаписи.

Основными достоинствами накопителей на оптических дисках явля­ются:

· сменяемость и компактность носителей;

· большая информационная емкость;

· высокая надежность и долговечность;

· малая чувствительность к загрязнениям и вибрациям;

· нечувствительность к электромагнитным полям.

Оптический компакт-диск (CD) появился в 1982 г. Он идеально подхо­дил для записи цифровой информации больших объемов (600-700 Мбайт) на сменном носи­теле. Запись на компакт-диск при промышленном производстве про­изводится в несколько этапов. Сначала с использованием мощного ин­фракрасного лазера в стеклянном контрольном диске выжигают­ся отверстия диаметром 0,8 мик­рон. По контрольному диску изго­тавливается шаблон с выступами в тех местах, где лазер прожег отвер­стия. В шаблон вводится жидкая смола (поликарбонат), и по­лу­чают диск с таким же набором впадин, что и отверстий в контрольном диске. Со стороны впадин на диск напыля­ется тонкий слой алюминия, который затем покры­вается лаком, защищаю­щим его от царапин. Впадины и пло­щадки (имеющие разную отражатель­ную способность) записыва­ются на диск по спирали. В середине 90-х гг. поя­вились устройства, устанавливаемые не­посредственно на компьютере и по­зво­ляющие производить однократ­ную запись информации на компакт-диск. Для таких устройств вы­пускают специальные компакт-диски, кото­рые полу­чили название CD-Recodable (CD-R). Отражающим слоем у них служит тон­кий слой позолоты. Между слоем позолоты и слоем поликарбамидной смолы вводится слой красителя. На диске без записи этот слой красителя бесцветен, но под воздействием лазерного луча краситель темнеет, образуя пятна, кото­рые при вос­произведении воспринима­ются как выступы. Позднее появились компакт-диски с возможностью перезаписи - CD-ReWritable (CD-RW). На этих дисках слой краси­теля может находиться в двух состояниях: кристалли­ческом и аморфном. Эти два состояния имеют разную отра­жательную спо­собность. Лазер устрой­ства имеет три уровня мощности. При записи мощ­ность лазерного диода повышается и расплавляет слой красителя, переводя его в аморфное состояние с низкой отражательной спо­собностью, что со­от­ветствует вы­ступу (запись информации). При средней мощности краситель плавится и переходит в кристаллическое состояние с высокой отража­тельной способностью (стирание ин­формации). Низкая мощность лазера использу­ется для считывания информации. Дальнейшее развитие технологий произ­водства компакт-дисков привело к соз­данию дисков с высокой плотностью записи - цифро­вой универсальный диск Digital Versatile Disk (DVD). Впадины на них имеют меньший диаметр (0,4 микрона), а спи­раль размещается с плотностью 0,74 микрона между дорожками (вместо 1,6 микрон у CD). Это позволило увеличить объем информации на диске до 4,7 Гбайт. Даль­нейшее увеличение объема информации обеспечива­ется применением двусторонних DVD.

К недостаткам дисковой памяти можно отнести наличие механических движущих компонентов и большую потребляемую мощность при записи и считывании. Появление большого числа цифровых устройств (цифровых фото- и видеокамер, карманных компьютеров и т.д.) потребовало разра­ботки миниатюрных устройств внешней памяти, которые обладали бы малой энергоемкостью, небольшими размерами, значительным объемом и обеспе­чивали бы совместимость с персональными компьютерами. Первые про­мышленные образцы такой памяти появились в 1994 г. Новый тип памяти получил название флэш-память (Flash-Memory). Флэш-память представляет собой микросхему энергонезависимого, перепрограммируемого постоянного запоминающего устройства с произвольным доступом и неограниченным числом циклов перезаписи. Она использу­ется как для соз­дания быстро­дей­ству­ющих, ком­пакт­ных запо­ми­нающих уст­ройств – «твердотельных дис­ков», так и для замены ПЗУ.

Накопители на магнитной ленте. Как отмечалось, исторически пер­выми магнитными носителями в машинах 1 и 2 поко­ления были магнитные ленты (цифровые магнитофоны) и магнитные бара­баны. В универсальных ЭВМ широко использовались и использу­ются накопи­тели на бобинной маг­нитной ленте, а в персональных ЭВМ - на­копители на кас­сет­ной магнитной ленте. Последние весьма разнообразны: они отличаются как шири­ной при­меняемой магнитной ленты, так и конст­рукцией и носят название стриме­ров. Стримеры просты в использовании и обеспечивают самое дешевое хра­нение дан­ных. Основными преиму­щест­вами кассетной ленты по сравнению с дру­гими но­си­телями информации яв­ляется ее отно­сительно малая стоимость и большой объем памяти. Главный же не­достаток ее со­стоит в том, что на дос­туп к информации за­трачивается больше вре­мени, чем при других ви­дах па­мяти.

Итак, персональные ЭВМ имеют четыре иерархических уровня памяти: мик­ро­процессор­ную память, регистровую КЭШ-память(1-го и 2-го уров­ней), основную память, внеш­нюю память.

Тип памяти Емкость
МПП Десятки байт
КЭШ-память Сотни Кбайт
ОП ОЗУ ПЗУ   Десятки Мбайт – единицы Гбайт Сотни Кбайт
ВЗУ НГМД НЖМД CD-ROM   Единицы Мбайт Сотни Гбайт Сотни Мбайт – единицы Гбайт

 

Следует сказать, что кроме постоянной памяти и обычной оперативной па­мяти, в IBM PC - совместимых компьютерах имеется также небольшой блок па­мяти для хранения параметров конфигурации компьютера. Эта часть памяти («Setup») явля­ется энергонезависимой, т.е. питается от отдельной ба­тареи, и в ней со­держатся пара­метры на­стройки конфигурации компьютера, например, типы же­ст­ких дисков и дисководов для дискет и т.д. Содержимое этой памяти (кото­рую называют иногда полупостоянной) не изменяется при выключении элек­тропита­ния компьютера, по­скольку для ее электропитания используется специ­альная ба­тарея, срок годности ко­торой обычно несколько лет. При замене бата­реи необхо­димо обновлять основ­ные установки.

– Конец работы –

Эта тема принадлежит разделу:

Принципы построения компьютера

Классификация ВМ... Многообразие свойств и характеристик порождает различные виды класси фика ции... По принципу действия вычислительные машины делятся на три больших класса аналого вые АВМ цифровые ЦВМ и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Устройства персонального компьютера

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принципы построения компьютера
Потребность в облег­чении вычислений, возникла давно. Для этих целей примерно в V - IV вв. до н.э. была создана – «саламинская доска» (по имени острова Саламин в Эгейском море), которая у гр

Поколения компьютеров
Появление ЭВМ прежде всего диктовалось потребностями физических и инженерных наук. Успехи этих наук в свою очередь приводили к совер­шенствованию ЭВМ. Приблизительно каждые 10 лет происходил качест

Основные виды архитектуры ЭВМ
При рассмотрении компьютерных устройств принято различать их ар­хитектуру и структуру. Архитектурой компьютера называется его описание на некотором об­щем уровне, включающее описан

Основные устройства ввода данных
2.6.1. Клавиатура и манипуляторы Клавиатура (Keyboard) является основным устройством ввода инфор­мации в компьютер (ввод данных

Основные устройства вывода
2.7.1. Видеосистема компьютера Видеосистема компьютера состоит из монитора, видеоадаптера и про­граммного обеспечения. Видеоадаптер посылает в монитор сиг

Возможность автоматической подачи бумаги.
Шрифты - какие шрифты поддерживает принтер. Некоторые принтеры пре­дос­тавляют большое количество (несколько десятков) шрифтов, а не­ко­торые - только один.

Другие устройства
Устройства связи и телекоммуникациииспользуются для подключе­ния ПК к ка­налам связи, к другим ЭВМ и вычислительным сетям. Модем (МО

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги