рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейное дифференциальное уравнение второго порядка с постоянными коэффициентами

Линейное дифференциальное уравнение второго порядка с постоянными коэффициентами - раздел Компьютеры, Непрерывность функции. Точки разрыва. Асимптоты графика функции До Сих Пор Мы Ограничивались Рассмотрением Дифференциальных Уравнений Первого...

До сих пор мы ограничивались рассмотрением дифференциальных уравнений первого порядка, т.е. таких уравнений, в которые искомая функция входит только под знаком первой производной. Но в приложениях часто встречаются дифференциальные уравнения старших порядков, т.е. уравнения, которые содержат производные искомые функции второго или еще более высокого порядка. Мы ограничимся рассмотрением только линейного дифференциального уравнения второго порядка с постоянными коэффициентами.

Определение. Линейным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида

(1)

 

где a и b- пара действительных чисел, а - непрерывная функция, определенная на некотором промежутке Если на указанном промежутке, то, как и ранее, уравнение (1) называется однородным;

– Конец работы –

Эта тема принадлежит разделу:

Непрерывность функции. Точки разрыва. Асимптоты графика функции

Правила дифференцирования.. таблица производных основных функций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейное дифференциальное уравнение второго порядка с постоянными коэффициентами

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Непрерывность функции. Точки разрыва. Асимптоты графика функции
     

Уравнение касательной и нормали к плоской кривой
у1 у0

Эластичность функции
  Будем рассматривать дифференцируемую функцию . Как и ранее,

Вычисление дифференциала функции
Дифференциалом функции у=f(x) называется произведение производной этой функции на произвольно

Приближенные вычисления.
  Формулу используют для приближённого вычисления значений функций. Допускаемая при этом

Применение производной к исследованию функции
  Функция y=f(x) называется возрастающей в промежутке , ес

Интегральное исчисление. Неопределенный интеграл и его свойства
Будем считать, что мы достаточно хорошо освоили операцию дифференцирования одной переменной и, используя таблицу производных и основные правила дифференцирования, уверенно вычисляем производные осн

Основные свойства неопределенного интеграла
1° 2°

Несколько стандартных правил интегрирования
  Правило подведения под знак дифференциала.   Правило основано на следующем очевидном утверждении, которое следует из инвариантности фо

Определенный интеграл
  Понятие определенного интеграла.   Рассмотрим функцию

Дифференциальные уравнения
Некоторые понятия теории дифференциальных уравнений. Многие процессы экономики, физики, химии, астрономии, биологии описываются одной функцией у=у(х), заданной на некотором множеств

Дифференциальные уравнения I порядка
  Простейшим дифференциальным уравнением I порядка называется дифференциальное уравнение вида

Теорема 2. Для того чтобы функция являлась решением уравнения (2), необходимо и достаточно, чтобы число являлось корнем уравнения
(4)   Доказательство. Очевидно, что для указанной функ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги