рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Принципы построения устройств внутренней памяти

Принципы построения устройств внутренней памяти - Конспект Лекций, раздел Компьютеры, Вычислительные машины однопроцессорные ЭВМ Памятью Эвм Называют Совокупность Устройств, Служащих Для Запоминания, Хранен...

Памятью ЭВМ называют совокупность устройств, служащих для запоминания, хранения и выдачи информации. Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами или памятями того или иного типа. В настоящее время и ЗУ, и память стали практически синонимами.

Производительность ЭВМ и ее возможности в большой степени зависят от характеристик ЗУ, причем в любой ЭВМ общего назначения используют несколько типов ЗУ.

Основные операции:

- Запись – занесение информации в память;

- Считывание – выборка информации из памяти.

Обе этих операции называются в общем случае обращением к памяти.

При обращении к памяти происходит считывание или запись некоторой единицы данных, различной для устройств разного типа. Такой единицей может быть байт, машинное слово, блок данных.

Коротко рассмотрим важнейшие характеристики ЗУ – емкость, удельную емкость, быстродействие, которые характерны для любых типов ЗУ, а также некоторые методы их классификации.

· Емкость памяти определяется максимальным количеством данных, которые могут в ней храниться одновременно. Емкость измеряется в битах, байтах, машинных словах (об этом говорилось в самом начале курса). Используют обычно более крупные единицы измерения: 1К = 1024 (Кбит, Кбайт, Кслов),
1024 Кбайт = 1 Мбайт, 1024 Мбайт = 1 Гбайт.

· Удельная емкость определяется как отношение емкости ЗУ к его физическому объему и характеризует степень технологического совершенства ЗУ.

· Удельная стоимость определяется как отношение стоимости ЗУ к его емкости и определяет, помимо технологического совершенства конкурентоспособность изделия на рынке.

· Быстродействие памяти определяет продолжительность операции обращения и делится:

- на время обращения при считывании . Это время, необходимое на поиск нужной единицы информации и ее считывание;

- время обращения при записи . Это время, необходимое для поиска места для хранения данной единицы информации и ее запись в память.

В некоторых устройствах памяти считывание информации сопровождается ее разрушением (стиранием). В этом случае цикл обращения к ЗУ при считывании должен содержать операцию регенерации считываемой информации на прежнем месте в памяти. В ряде случаев ЗУ требуют перед началом записи привести запоминающие элементы в некоторое начальное состояние. В этом случае цикл обращения к ЗУ при записи должен содержать операции подготовки запоминающих элементов к самой операции записи.

В общем случае продолжительность цикла обращения к памяти при считывании состоит из следующих компонент:

,

где – время доступа при считывании – интервал времени между началом операции обращения при считывании и моментом, когда доступ к данной единице информации стал возможен;

– продолжительность самого физического процесса считывания, т.е. процесса обнаружения и фиксации состояния соответствующих запоминающих элементов или участков поверхности носителя;

– время на восстановление разрушенной при считывании информации. В ЗУ без разрушения .

Продолжительность цикла обращения к памяти при записи информации в общем случае состоит из следующих компонент:

,

где – время доступа при записи – интервал времени от начала обращения до момента, когда становится возможен доступ к запоминающему элементу или участку поверхности носителя, в который производится запись;

– интервал времени, необходимый для приведения в исходное состояние запоминающих элементов или участков поверхности носителя для записи данной единицы информации;

– продолжительность самого физического процесса записи, т.е. время для изменения физического состояния запоминающих элементов или участка поверхности носителя.

В большинстве случаев

.

В качестве продолжительности цикла обращения к памяти принимается величина

.

Следует иметь в виду, что для хранения информации в ЭВМ используются устройства памяти, построенные на разных принципах действия и имеющие разнообразнейшие технические и конструктивные реализации. Кроме того, все они являются сложнейшими электронными устройствами. Поэтому устройства памяти обладают многочисленными характеристиками, по каждой из которых можно производить классификацию устройств. Ниже будут рассмотрены только основные критерии, по которым принято квалифицировать ЗУ, а именно: по принципу действия, по реализации в памяти операций обращения, по способу доступа к хранимой информации.

1.Принцип действия. По этому признаку основные типы ЗУ, наиболее широко используемые в современных ЭВМ, делятся:

· на электронные, в которых в качестве запоминающих элементов используют полупроводники;

· магнитные с неподвижными запоминающими элементами;

· магнитомеханические с движущимися магнитными носителями информации;

· оптические с движущимся носителем информации;

· магнитооптические с движущимся носителем информации.

В качестве внутренней памяти ЭВМ в абсолютном большинстве случаев используются электронные ЗУ на полупроводниковых элементах. В редких случаях в специализированных управляющих ЭВМ используются ЗУ с неподвижными магнитными запоминающими элементами. Остальные типы устройств используются в качестве внешних памятей ЭВМ. Более подробно эти устройства рассматриваются в отдельном курсе "Периферийные устройства ЭВМ".

В настоящее время разрабатываются и исследуются многочисленные "нетрадиционные" ЗУ, а именно: ЗУ на приборах с зарядовой связью, акустоэлектронные ЗУ, пьезоэлектронные ЗУ, магнитоэлектронные ЗУ и т.д.

2. Способ реализации в памяти операций обращения. По этому признаку различают:

· Память с произвольным обращением, допускающую как считывание, так и запись информации (RAM). Это энергозависимые ЗУ (информация в них сохраняется только при наличии питания), которые используются для построения ОЗУ, кэш, СОП и т.д.

· Память постоянная, допускающая только считывание информации, заложенной в нее в процессе изготовления или настройки (ROM). Это энергонезависимые ЗУ (информация в них сохраняется при отсутствии питания), которые, в свою очередь, делятся на постоянные ЗУ (ПЗУ, EPROM) и перепрограммируемые ЗУ (ППЗУ, EEPROM). Быстродействие RAM и ROM примерно одинаковое.

· Флэш ППЗУ (Flash EEPROM) – энергонезависимые перепрограммируемые ЗУ, информация в которых сохраняется до нескольких лет. Обращения к ним возможно как для записи, так и для чтения. Однако быстродействие этих ЗУ ниже, чем у RAM и ROM. Обычно флэш используются для накопления информации. Число перезаписей флэш ограничено.

3. Способ организации доступа. По этому признаку различают ЗУ с непосредственным (произвольным), с прямым (циклическим) и последовательным доступом.

· Непосредственный (произвольный) доступ. В ЗУ этого типа время доступа, а поэтому и цикл обращения не зависят от места расположения элемента памяти, с которого производится считывание или в который записывается информация. В большинстве случаев это электронные ЗУ, в которых непосредственный доступ реализуется с помощью электронных логических схем. В ЗУ с произвольным доступом цикл обращения составляет от 1-2 мкс до единиц
наносекунд.

Независимость от положения запоминающего элемента в запоминающем массиве имеет место только до определенной частоты обращений процессора к ЗУ. При увеличении частоты обращений до единиц наносекунд начинает сказываться геометрическое положение запоминающего элемента в массиве. Это обусловлено, прежде всего, конечной скоростью распространения электрического сигнала в изолированном проводнике, которая составляет примерно 60 % от скорости света.

Число разрядов, считываемых или записываемых в память с произвольным доступом параллельно во времени за одну операцию обращения, называется шириной выборки.

В других типах ЗУ используют более медленные электромеханические процессы, поэтому и цикл обращения больше.

· Прямой (циклический) доступ. К ЗУ этого типа относятся устройства на магнитных, оптических и магнитооптических дисках, а также на магнитных барабанах (последние в настоящее время используются очень редко). Благодаря непрерывному вращению носителя информации возможность обращения к некоторому участку носителя для считывания или записи циклически повторяется. В таких ЗУ время доступа составляет обычно от долей секунды до единиц миллисекунды.

· Последовательный доступ. К ЗУ этого типа относятся устройства на магнитных лентах. В процессе доступа производится последовательный просмотр участков носителя информации, пока нужный участок не займет некоторое исходное положение. Время доступа в худшем случае составляет минуты, поскольку магнитофон будет вынужден осуществить перемотку всей кассеты.

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные машины однопроцессорные ЭВМ

Вычислительные машины.. конспект лекций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Принципы построения устройств внутренней памяти

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЧАСТЬ 2
  Настоящий конспект лекций продолжает материал, изложенный в первой части. Конспект посвящен изучению основ организации и функционирования ЭВМ в целом и ее отдельных узлов, взаимодей

Структура памяти эвм
Классическая пятиблочная структура Неймана, рассмотренная ранее, предполагала наличие только одного устройства памяти – ОП. Однако современные ЭВМ имеют иерархическую структуру памяти, каждый урове

Адресная память
В памяти с адресной организацией размещение и поиск информации в ЗМ основаны на использовании адреса хранения единицы информации, которую в дальнейшем для краткости будем называть словом. Ад

Ассоциативная память
В памяти этого типа поиск информации происходит не по адресу, а по ее содержанию. Под содержанием информации в данном случае понимается не смысловая нагрузка лежащего на хранении в ячейке памяти сл

Стековая память (магазинная)
Стековая память, так же как и ассоциативная, является безадресной. Стековая память может быть организована как аппаратно, так и на обычном массиве адресной памяти. В случае аппаратной реал

Структуры адресных запоминающих устройств
Адресные ЗУ наиболее широко используются в современных ЭВМ для построения самых разнообразных устройств памяти. В процессе эволюции ЭВМ принципы построения и аппаратная реализация данных ЗУ прошли

Запоминающее устройство типа 2d
Организация ЗУ типа 2D обеспечивает двухкоординатную выборку каждого ЗЭ ячейки памяти. Основу ЗУ составляет плоская матрица из ЗЭ, сгруппированных в 2k ячеек по n разрядов. Обращение к я

Запоминающее устройство типа 3d
Для построения ЗУ больших объемов используют другую схему и другие типы ЗЭ, которые имеют не один, а два конъюнктивно связанных входа выборки. В этом случае адресная выборка осуществляется только п

Запоминающее устройство типа 2d-м
В ЗУ типа 2D-M ЗМ для записи n-разрядных двоичных чисел состоит из n плоских матриц для одноименных разрядов всех чисел, что имеет место в ЗУ типа 3D. Однако процесс записи и считывания информации

ЗЭ на ферритовых кольцах
Памяти на магнитных (ферритовых) сердечниках с прямоугольной петлей гистерезиса появились в начале 50-х годов и сыграли большую роль в увеличении объемов ОП и производительности ЭВМ. Однако появивш

ЗЭ на полупроводниковых элементах
Абсолютное большинство ЗУ внутренней памяти современных ЭВМ (а в универсальных ЭВМ общего назначения – 100%) построено на полупроводниковых ЗЭ. По сравнению с другими типами ЗЭ полупроводниковые ЗЭ

Постоянные запоминающие устройства (ПЗУ, ППЗУ)
Постоянные ЗУ в рабочем режиме ЭВМ допускают только считывание хранимой информации. В зависимости от типа ПЗУ занесение в него информации производится или в процессе изготовления, или в эксплуатаци

Флэш-память
Флэш-память (flash-memory) по типу запоминающих элементов и основным принципам работы подобна памяти типа EEPROM (ППЗУ) с электрическим перепрограммированием. Однако ряд архитектурных и структурных

Контрольные задания
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Общие замечания
При рассмотрении работы процессора подчеркивалось, что информация о том, какую машинную операцию надо выполнить в данный момент, над какими операндами и куда поместить результат, задается машинн

Возможные структуры машинных команд
Процесс эволюции ЭВМ и расширение сферы их целевого использования, совершенствование аппаратного и программного обеспечения ЭВМ привели к созданию машинных команд очень сложной структуры. Однако, е

Способы адресации
Определимся с терминами, которые будут использоваться ниже. Адресный код (АК) – это информация об адресе операнда, содержащаяся в команде. Исполнительный адрес (АИ)

Команды передачи управления
Ранее уже отмечалось, что порядок выполнения команд может быть естественным и принудительным. При естественном порядке после выполнения очередной команды выбирается команда, расположенная в следующ

Команды безусловного перехода (БП)
Общая структура команды безусловного перехода изображена на рис. 5.11. При исполнении этой команды переход осуществляется всегда независимо от каких-либо условий.  

Команды условного перехода (УП)
В этом случае адрес следующей команды зависит от выполнения некоторого условия. Обычно если условие выполняется, то происходит передача управления. Если условие не выполняется, то берется следующая

Команды перехода на подпрограмму
Подпрограмма представляет собой фрагмент программы, обращение к которому может иметь место в любой точке главной программы. Для перехода к подпрограмме в ЭВМ существуют команды безусловного

Индексация
Характерным моментом в процессе переработки информации в ЭВМ является цикличность вычислительных процессов, при которых одни и те же операции могут выполняться над различными операндами, расположен

Контрольные задания
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Принципы организации систем прерывания программ
В процессе выполнения программ внутри ЭВМ или во внешней среде могут возникнуть события, требующие немедленной реакции со стороны процессора. Реакция состоит в том, что процессор прерывает обработк

Характеристики систем прерывания
Эффективность систем прерывания ЭВМ может оцениваться по весьма многочисленным характеристикам, которые отражают особенности их технической реализации. Однако для изучения общих принципов построени

Возможные структуры систем прерывания
Конкретные технические реализации систем прерывания имеют множество вариантов и зависят от типа используемого процессора, структуры системного интерфейса, целевого назначения ЭВМ. В то же время все

Организация перехода к прерывающей программе
Конкретные реализации процедур перехода к прерывающей программе во многом зависят от структуры системы прерывания и типа используемого процессора. Между тем можно сформулировать некоторые общие при

Реализация фиксированных приоритетов
Рассмотрим только простейший случай установки приоритетных соотношений, состоящий в том, что уровень приоритета определяется порядком присоединения ЛЗП к входам системы прерывания, т.е. разрядам Рг

Реализация программно-управляемых приоритетов
Существуют три основных метода реализации в ЭВМ систем программно-управляемых приоритетов – порог прерывания, маска прерывания и смена приоритетов. Первый используется, в основ

Контрольные задания
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Простейшая микроэвм
В зависимости от целевого назначения и используемого процессора ЭВМ существенно различаются по своим вычислительным возможностям, размерам, стоимости конструкции. Несмотря на то что принципы функци

Системный интерфейс микроэвм. Цикл шины
Современные процессоры конструктивно выполняются либо в виде одной БИС (СБИС), либо в виде нескольких БИС, установленных на плате модуля процессора в непосредственной близости друг от друга. Кроме

Промежуточный интерфейс
К процессору микроЭВМ обычно подключается достаточно много ПУ. Это клавиатура, индикаторы, печатающие устройства, накопители, различные датчики и исполнительные устройства систем управления и т.д.

МП с фиксированной системой команд
В п. 3 уже рассматривались принципы функционирования элементарного гипотетического микропроцессора (термин "микропроцессор" и "процессор" далее используются как синонимы). Между

Регистры данных
Для хранения участвующих в операции данных предусмотрены семь 8-раз­рядных регистров. РгА, называемый аккумулятором, предназначен для обмена информацией с памятью и ПУ, т.е. его содержимое может бы

Регистр признаков
Ранее отмечалось, что РгП называют еще регистром флажков и обозначают часто буквами Ф или F. Это 8-разрядный регистр, в котором используются только 5 разрядов. Он предназначен для хранения ряда при

МП с точки зрения программиста
С точки зрения пользователя, реализация физических процессов, протекающих в микросхеме, не представляет особого интереса, как и физическая реализация отдельных узлов МП. В распоряжение пользователя

МП-устройство на основе МП КР580ВМ80А
Упрощенная структурная схема вычислительного устройства на базе МП I8080 (КР580ВМ80А) представлена на рис. 7.9. Это простейшая микроЭВМ минимальной конфигурации, структура которой является частным

Форматы данных МП КР580
Основной формат данных изображен на рис. 7.11.     В микроЭВМ байт данных может интерпретиров

Форматы команд МП 580ВМ80
Для команд используются одно-, двух-, трехбайтовые форматы, причем код операции (КОП) занимает всегда 1 байт. Кроме того, следует помнить, что ША имеет 16 разрядов, т.е. позволяет адресоваться к па

Способы адресации
Способы адресации рассмотрим очень коротко, поскольку все типы адресации в общем виде разобраны ранее.   Прямая адресация В этом случае источником или приемни

Система команд МП 580
Для программирования микроЭВМ на базе МП комплекта КР580 используется 244 команды. Ниже очень коротко будет рассмотрена только часть команд, необходимая для программирования простых задач. Таблицы

Команды управления
Команды этой группы не изменяют содержимого РгП (F).   Команды безусловного перехода По прямому адресу JMP @, где @ – двухбайтовый адре

Контрольные задания
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги