рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ХАРАКТЕРИСТИКИ СИСТЕМ ПРЕРЫВАНИЯ

ХАРАКТЕРИСТИКИ СИСТЕМ ПРЕРЫВАНИЯ - Конспект Лекций, раздел Компьютеры, ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ ОДНОПРОЦЕССОРНЫЕ ЭВМ Эффективность Систем Прерывания Эвм Может Оцениваться По Весьма Многочисленны...

Эффективность систем прерывания ЭВМ может оцениваться по весьма многочисленным характеристикам, которые отражают особенности их технической реализации. Однако для изучения общих принципов построения систем прерывания достаточно рассмотреть только самые обобщенные. К их числу относятся следующие характеристики.

 

· Общее количество запросов прерывания

Количество запросов прерывания (источников запросов прерывания – ИЗП) существенно различается у ЭВМ различных типов и может достигать десятков. В системах прерывания радиальной структуры это понятие может совпадать с понятием количества входов в систему прерывания. При цепочечной организации системы прерывания эти понятия не совпадают.

 

· Время реакции

Время реакции определяется как временной интервал между появлением запроса прерывания и началом выполнения прерывающей программы.

На рис. 6.2 приведена упрощенная временная диаграмма процесса прерывания в предположении, что управление запоминанием и возвратом возложено на сам обработчик. В этом случае он состоит из трех частей – подготовительной и заключительной, обеспечивающих переключение программ, и собственно прерывающей программы, выполняющей затребованные запросом операции. Кроме того, предполагается, что запрос представлен уровнем потенциала.

Для одного и того же запроса задержка в исполнении прерывающей программы (обработчика данного запроса) зависит от того, сколько запросов со старшим приоритетом ожидает обслуживания, поэтому время реакции определяется для запроса с наивысшим приоритетом. На рис. 6.2 оно обозначено tp.

 

· Задержка прерывания (издержка прерывания)

Задержка прерывания (tзад) определяется суммарным временем на запоминание (tз) и восстановление (tв) программы (см. рис. 6.2):

 

.

 

 
 

 

 

· Глубина прерывания

Глубина прерывания определяет максимальное число программ, которые могут прерывать друг друга. Если после перехода от основной программы к прерывающей обслуживание остальных запросов запрещено, то считается, что система имеет глубину прерывания, равную 1. Глубина равна n, если допускается последовательное прерывание до n программ. Глубина прерывания обычно совпадает с числом уровней приоритетов в системе прерывания. Если глубина прерывания не равна 1, то упрощенно это можно изобразить диаграммой (рис. 6.3). Здесь имеется в виду, что приоритет прерываний возрастает у каждого следующего запроса. Системы с большим значением глубины прерывания обеспечивают более быструю реакцию на срочные запросы.

 

· Насыщение системы прерывания

Если запрос окажется не обслуженным к моменту прихода нового запроса от того же источника (т.е. того же приоритета), то возникает явление, называемое насыщением системы прерывания. В этом случае часть запросов прерывания будет утрачена, что для нормальной работы ЭВМ недопустимо. Поэтому быстродействие ЭВМ, характеристики системы прерывания и частоты возникающих запросов должны быть строго согласованы, чтобы насыщение было невозможно.

· Допустимые моменты прерывания программ

В большинстве случаев прерывания допускаются после выполнения любой текущей команды, когда время реакции на прерывание определяется, в основном, длительностью выполнения одной команды.

При работе ЭВМ с быстрыми технологическими процессами в реальном масштабе времени (т.е. в контурах управления реальных физических процессов) это время может оказаться недопустимо большим. Кроме того, существуют задачи, при выполнении которых требуется немедленная реакция на ошибку, обнаруженную, например, аппаратурой контроля, чтобы не допустить выполнения ошибочно сформированного кода команды. Такие ситуации характерны для управляющих ЭВМ военного назначения.

В этом случае в системе прерывания реализуется возможность прерывания после любого такта выполнения команды программы. Однако это требует запоминания, а потом восстановления гораздо большего объема информации, чем в случае прерывания после окончания команды, поэтому такая организация прерываний возможна только в ЭВМ с быстродействующей сверхоперативной памятью достаточного объема.

 

· Число уровней прерываний

Уже отмечалось, что в ЭВМ число различных источников запросов (причин) прерывания может достигать десятков и даже сотен. Однако в ряде случаев многие запросы поступают от групп однотипных устройств, для обслуживания которых требуется одна и та же прерывающая программа (обработчик). Запросы от однотипных устройств целесообразно объединить в группы, каждой из которых будет соответствовать свой сигнал запроса прерывания.

Уровнем или классом прерывания называется совокупность запросов, инициирующих одну и ту же прерывающую программу (обработчик).

Технически такое объединение может быть реализовано по-разному. На рис. 6.4 приведен возможный вариант решения этой задачи при условии, что все поступающие запросы фиксируются в разрядах регистра запросов прерывания (РгЗП).

 
 

 

Запросы от всех источников поступают в РгЗП, устанавливая соответствующие его разряды (флажки) в состояние 1, указывающее на наличие запроса прерывания. Запросы классов прерывания ЗПК1-ЗПКk формируют элементы ИЛИ, объединяющие разряды РгЗП, относящиеся к соответствующим уровням. Еще одна схема ИЛИ формирует ОСП, поступающий в УУ процессора. Он формируется при любом запросе (поднятом флажке) прерывания.

Информация о действительной причине прерывания (конкретном источнике запроса), породившей запрос данного класса, содержится в коде прерывания, который отражает состояние разрядов РгЗП, относящихся к данному классу прерываний. В процессе обработки прерывания эти разряды (содержащийся в них код) подвергаются анализу. Такое объединение прерываний в классы уменьшает объем аппаратуры, но замедляет работу системы прерывания. После передачи управления прерывающей программе соответствующий триггер РгЗП сбрасывается.

– Конец работы –

Эта тема принадлежит разделу:

ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ ОДНОПРОЦЕССОРНЫЕ ЭВМ

ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ... конспект лекций...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ХАРАКТЕРИСТИКИ СИСТЕМ ПРЕРЫВАНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЧАСТЬ 2
  Настоящий конспект лекций продолжает материал, изложенный в первой части. Конспект посвящен изучению основ организации и функционирования ЭВМ в целом и ее отдельных узлов, взаимодей

ПРИНЦИПЫ ПОСТРОЕНИЯ УСТРОЙСТВ ВНУТРЕННЕЙ ПАМЯТИ
Памятью ЭВМ называют совокупность устройств, служащих для запоминания, хранения и выдачи информации. Отдельные устройства, входящие в эту совокупность, называются запоминающими устройствами или пам

СТРУКТУРА ПАМЯТИ ЭВМ
Классическая пятиблочная структура Неймана, рассмотренная ранее, предполагала наличие только одного устройства памяти – ОП. Однако современные ЭВМ имеют иерархическую структуру памяти, каждый урове

АДРЕСНАЯ ПАМЯТЬ
В памяти с адресной организацией размещение и поиск информации в ЗМ основаны на использовании адреса хранения единицы информации, которую в дальнейшем для краткости будем называть словом. Ад

АССОЦИАТИВНАЯ ПАМЯТЬ
В памяти этого типа поиск информации происходит не по адресу, а по ее содержанию. Под содержанием информации в данном случае понимается не смысловая нагрузка лежащего на хранении в ячейке памяти сл

СТЕКОВАЯ ПАМЯТЬ (МАГАЗИННАЯ)
Стековая память, так же как и ассоциативная, является безадресной. Стековая память может быть организована как аппаратно, так и на обычном массиве адресной памяти. В случае аппаратной реал

СТРУКТУРЫ АДРЕСНЫХ ЗУ
Адресные ЗУ наиболее широко используются в современных ЭВМ для построения самых разнообразных устройств памяти. В процессе эволюции ЭВМ принципы построения и аппаратная реализация данных ЗУ прошли

ЗУ ТИПА 2D
Организация ЗУ типа 2D обеспечивает двухкоординатную выборку каждого ЗЭ ячейки памяти. Основу ЗУ составляет плоская матрица из ЗЭ, сгруппированных в 2k ячеек по n разрядов. Обращение к я

ЗУ ТИПА 3D
Для построения ЗУ больших объемов используют другую схему и другие типы ЗЭ, которые имеют не один, а два конъюнктивно связанных входа выборки. В этом случае адресная выборка осуществляется только п

ЗУ ТИПА 2D-М
В ЗУ типа 2D-M ЗМ для записи n-разрядных двоичных чисел состоит из n плоских матриц для одноименных разрядов всех чисел, что имеет место в ЗУ типа 3D. Однако процесс записи и считывания информации

ЗЭ НА ФЕРРИТОВЫХ КОЛЬЦАХ
Памяти на магнитных (ферритовых) сердечниках с прямоугольной петлей гистерезиса появились в начале 50-х годов и сыграли большую роль в увеличении объемов ОП и производительности ЭВМ. Однако появивш

ЗЭ НА ПОЛУПРОВОДНИКОВЫХ ЭЛЕМЕНТАХ
Абсолютное большинство ЗУ внутренней памяти современных ЭВМ (а в универсальных ЭВМ общего назначения – 100%) построено на полупроводниковых ЗЭ. По сравнению с другими типами ЗЭ полупроводниковые ЗЭ

ПОСТОЯННЫЕ ЗУ (ПЗУ, ППЗУ)
Постоянные ЗУ в рабочем режиме ЭВМ допускают только считывание хранимой информации. В зависимости от типа ПЗУ занесение в него информации производится или в процессе изготовления, или в эксплуатаци

ФЛЭШ-ПАМЯТЬ
Флэш-память (flash-memory) по типу запоминающих элементов и основным принципам работы подобна памяти типа EEPROM (ППЗУ) с электрическим перепрограммированием. Однако ряд архитектурных и структурных

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ОБЩИЕ ЗАМЕЧАНИЯ
При рассмотрении работы процессора подчеркивалось, что информация о том, какую машинную операцию надо выполнить в данный момент, над какими операндами и куда поместить результат, задается машинн

ВОЗМОЖНЫЕ СТРУКТУРЫ МАШИННЫХ КОМАНД
Процесс эволюции ЭВМ и расширение сферы их целевого использования, совершенствование аппаратного и программного обеспечения ЭВМ привели к созданию машинных команд очень сложной структуры. Однако, е

СПОСОБЫ АДРЕСАЦИИ
Определимся с терминами, которые будут использоваться ниже. Адресный код (АК) – это информация об адресе операнда, содержащаяся в команде. Исполнительный адрес (АИ)

КОМАНДЫ ПЕРЕДАЧИ УПРАВЛЕНИЯ
Ранее уже отмечалось, что порядок выполнения команд может быть естественным и принудительным. При естественном порядке после выполнения очередной команды выбирается команда, расположенная в следующ

КОМАНДЫ БЕЗУСЛОВНОГО ПЕРЕХОДА (БП)
Общая структура команды безусловного перехода изображена на рис. 5.11. При исполнении этой команды переход осуществляется всегда независимо от каких-либо условий.  

КОМАНДЫ УСЛОВНОГО ПЕРЕХОДА (УП)
В этом случае адрес следующей команды зависит от выполнения некоторого условия. Обычно если условие выполняется, то происходит передача управления. Если условие не выполняется, то берется следующая

КОМАНДЫ ПЕРЕХОДА НА ПОДПРОГРАММУ
Подпрограмма представляет собой фрагмент программы, обращение к которому может иметь место в любой точке главной программы. Для перехода к подпрограмме в ЭВМ существуют команды безусловного

ИНДЕКСАЦИЯ
Характерным моментом в процессе переработки информации в ЭВМ является цикличность вычислительных процессов, при которых одни и те же операции могут выполняться над различными операндами, расположен

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ПРИНЦИПЫ ОРГАНИЗАЦИИ СИСТЕМ ПРЕРЫВАНИЯ ПРОГРАММ
В процессе выполнения программ внутри ЭВМ или во внешней среде могут возникнуть события, требующие немедленной реакции со стороны процессора. Реакция состоит в том, что процессор прерывает обработк

ВОЗМОЖНЫЕ СТРУКТУРЫ СИСТЕМ ПРЕРЫВАНИЯ
Конкретные технические реализации систем прерывания имеют множество вариантов и зависят от типа используемого процессора, структуры системного интерфейса, целевого назначения ЭВМ. В то же время все

ОРГАНИЗАЦИЯ ПЕРЕХОДА К ПРЕРЫВАЮЩЕЙ ПРОГРАММЕ
Конкретные реализации процедур перехода к прерывающей программе во многом зависят от структуры системы прерывания и типа используемого процессора. Между тем можно сформулировать некоторые общие при

РЕАЛИЗАЦИЯ ФИКСИРОВАННЫХ ПРИОРИТЕТОВ
Рассмотрим только простейший случай установки приоритетных соотношений, состоящий в том, что уровень приоритета определяется порядком присоединения ЛЗП к входам системы прерывания, т.е. разрядам Рг

РЕАЛИЗАЦИЯ ПРОГРАММНО-УПРАВЛЯЕМЫХ ПРИОРИТЕТОВ
Существуют три основных метода реализации в ЭВМ систем программно-управляемых приоритетов – порог прерывания, маска прерывания и смена приоритетов. Первый используется, в основ

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

ПРОСТЕЙШАЯ МИКРОЭВМ
В зависимости от целевого назначения и используемого процессора ЭВМ существенно различаются по своим вычислительным возможностям, размерам, стоимости конструкции. Несмотря на то что принципы функци

СИСТЕМНЫЙ ИНТЕРФЕЙС МИКРОЭВМ. ЦИКЛ ШИНЫ
Современные процессоры конструктивно выполняются либо в виде одной БИС (СБИС), либо в виде нескольких БИС, установленных на плате модуля процессора в непосредственной близости друг от друга. Кроме

ПРОМЕЖУТОЧНЫЙ ИНТЕРФЕЙС
К процессору микроЭВМ обычно подключается достаточно много ПУ. Это клавиатура, индикаторы, печатающие устройства, накопители, различные датчики и исполнительные устройства систем управления и т.д.

МП С ФИКСИРОВАННОЙ СИСТЕМОЙ КОМАНД
В п. 3 уже рассматривались принципы функционирования элементарного гипотетического микропроцессора (термин "микропроцессор" и "процессор" далее используются как синонимы). Между

РЕГИСТРЫ ДАННЫХ
Для хранения участвующих в операции данных предусмотрены семь 8-раз­рядных регистров. РгА, называемый аккумулятором, предназначен для обмена информацией с памятью и ПУ, т.е. его содержимое может бы

РЕГИСТР ПРИЗНАКОВ
Ранее отмечалось, что РгП называют еще регистром флажков и обозначают часто буквами Ф или F. Это 8-разрядный регистр, в котором используются только 5 разрядов. Он предназначен для хранения ряда при

МП С ТОЧКИ ЗРЕНИЯ ПРОГРАММИСТА
С точки зрения пользователя, реализация физических процессов, протекающих в микросхеме, не представляет особого интереса, как и физическая реализация отдельных узлов МП. В распоряжение пользователя

МП-УСТРОЙСТВО НА ОСНОВЕ МП КР580ВМ80А
Упрощенная структурная схема вычислительного устройства на базе МП I8080 (КР580ВМ80А) представлена на рис. 7.9. Это простейшая микроЭВМ минимальной конфигурации, структура которой является частным

ФОРМАТЫ ДАННЫХ МП КР580
Основной формат данных изображен на рис. 7.11.     В микроЭВМ байт данных может интерпретиров

ФОРМАТЫ КОМАНД МП 580ВМ80
Для команд используются одно-, двух-, трехбайтовые форматы, причем код операции (КОП) занимает всегда 1 байт. Кроме того, следует помнить, что ША имеет 16 разрядов, т.е. позволяет адресоваться к па

СПОСОБЫ АДРЕСАЦИИ
Способы адресации рассмотрим очень коротко, поскольку все типы адресации в общем виде разобраны ранее.   Прямая адресация В этом случае источником или приемни

СИСТЕМА КОМАНД МП 580
Для программирования микроЭВМ на базе МП комплекта КР580 используется 244 команды. Ниже очень коротко будет рассмотрена только часть команд, необходимая для программирования простых задач. Таблицы

КОМАНДЫ УПРАВЛЕНИЯ
Команды этой группы не изменяют содержимого РгП (F).   Команды безусловного перехода По прямому адресу JMP @, где @ – двухбайтовый адре

КОНТРОЛЬНЫЕ ЗАДАНИЯ
1. На листах ответа должны быть указаны номер группы, фамилия студента и номер его варианта. 2. Номера вопросов выбираются студентом в соответствии с двумя последними цифрами в его зачетно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги