Принцип Кирхгофа построения шифров

 

Исходя из сказанного выше, можно перечислить несколько качеств, которым должен удовлетворять шифр, претендующий на то, чтобы считаться хорошим.

1. Анализ зашифрованных данных не должен давать злоумышленнику никаких сведений о внутреннем устройстве шифра. В шифротексте не должно прослеживаться никаких статистических закономерностей – например, статистические тесты не должны выявлять в зашифрованных данных никаких зависимостей и отклонений от равновероятного распределения битов (символов) шифротекста.

2. Алгоритм должен быть перенастраиваемым. В распоряжении злоумышленника рано или поздно может оказаться описание алгоритма, его программная или аппаратная реализация. Для того, чтобы в этом случае не пришлось заменять алгоритм полностью на всех узлах шифрования, где он используется, он должен содержать легко сменяемую часть.

Второе условие приводит нас к принципу Кирхгофа[1], безоговорочно принятому сейчас в искусстве построения надежных шифров. Этот принцип заключается в следующем: шифр определяется как параметризованный алгоритм, состоящий из процедурной части, то есть описания того, какие именно операции и в какой последовательности выполняются над шифруемыми данными, и параметров – различных элементов данных, используемых в преобразованиях. Раскрытие только процедурной части не должно приводить к увеличению вероятности успешного дешифрования сообщения злоумышленником выше допустимого предела. По этой причине, а также в силу того, что рассекречивание этой части достаточно вероятно само по себе, особого смысла хранить ее в секрете нет. В секрете держится некоторая часть параметров алгоритма, которая называется ключом шифра:

C = E(T) = EK(T),

здесь K – ключ шифра.

Использование принципа Кирхгофа позволяет получить следующие преимущества в построении шифров:

· разглашение конкретного шифра (алгоритма и ключа) не приводит к необходимости полной замены реализации всего алгоритма, достаточно заменить только скомпрометированный ключ;

· ключи можно отчуждать от остальных компонентов системы шифрования – хранить отдельно от реализации алгоритма в более надежном месте и загружать их в шифрователь только по мере необходимости и только на время выполнения шифрования – это значительно повышает надежность системы в целом;

· появляется возможность для точной оценки «степени неопределенности» алгоритма шифрования – она просто равна неопределенности используемого ключа: H(EK) = H(K).

Соответственно, становится возможным оценить вероятность и трудоемкость успешного дешифрования, то есть количество вычислительной работы, которую необходимо выполнить злоумышленнику для этого.

Вернемся к необходимому условию абсолютной стойкости шифра для шифров, построенных в соответствии с принципом Кирхгофа. В предположении, что никаких априорных данных о шифруемом тексте кроме его длины нет, получаем, что неопределенность исходного текста равна его длине, выраженной в битах:

H(T) = ïTï.

Максимально возможная неопределенность блока данных фиксированного размера достигается, когда все возможные значения этого блока равновероятны – в этом случае она равна размеру блока в битах. Таким образом, неопределенность ключа K не превышает его длины:

H(K) £ ïKï.

С учетом сказанного выше получаем необходимое условие абсолютной стойкости для шифров, удовлетворяющих принципу Кирхгофа:

ïKï ³ H(K) = H(EK) = H(E) ³ H(T) = ïTï.

Для того, чтобы шифр, построенный по принципу Кирхгофа, был абсолютно стойким, необходимо, чтобы размер использованного для шифрования ключа был не меньше размера шифруемых данных: ïKï³ïTï.

Точное равенство возможно только в том случае, если все возможные значения ключа равновероятны, что эквивалентно условию, что биты ключа равновероятны и статистически независимы друг от друга.

Примером абсолютно стойкого шифра может служить одноразовая гамма Вернама – наложение на открытые данные T ключа K такого же размера, составленного из статистически независимых битов, принимающих возможные значения с одинаковой вероятностью, с помощью некоторой бинарной операции °:

С = T °K.

Используемая для наложения гаммы операция должна удовлетворять некоторым условиям, которые можно суммировать следующим образом: уравнение зашифрования должно быть однозначно разрешимо относительно открытых данных при известных зашифрованных и ключе, и однозначно разрешимо относительно ключа при известных открытых и зашифрованных данных. Если операция удовлетворяет этому свойству, она подходит. Среди подходящих операций нет подходящих лучше и подходящих хуже, с точки зрения стойкости шифра они все одинаковы – «совершенство» не знает сравнительных степеней, оно либо есть, либо его нет. По указанной причине для практического использования обычно выбирают наиболее удобную в реализации операцию – «побитовое суммирование по модулю 2» или «побитовое исключающее ИЛИ», так как она обладает следующими свойствами:

· требует для своей реализации минимальной по сложности логики;

· обратна самой себе, поэтому для за- и расшифрования применяется одна и та же процедура.

Вернемся к вопросу об абсолютной стойкости шифров: как было отмечено ранее, абсолютно стойкие шифры требуют использования ключа, по размеру не меньшего шифруемых данных. Этот ключ должен быть и у отправителя, и у получателя, то есть его необходимо предварительно доставить им, а для этого необходим защищенный канал. Таким образом, наряду с потенциально незащищенным каналом для передачи зашифрованных данных необходимо существование защищенного канала для передачи такого же по размеру ключа. Это не всегда приемлемо по экономическим соображениям, поэтому подобные системы применяются лишь в исключительных случаях для защиты сведений, представляющих особую ценность. В подавляющем большинстве реальных систем шифрованной связи используются алгоритмы, не обладающие абсолютной стойкостью и поэтому называемые несовершенными шифрами.

Естественно, для таких шифров актуален вопрос надежной оценки их стойкости. Для них знание шифротекста позволяет снизить неопределенность соответствующего открытого текста, повысив тем самым вероятность успешного дешифрования. Однако, вопреки распространенному заблуждению, из этого вовсе не следует, что такое дешифрование возможно всегда.

Мнение о том, что сообщение, зашифрованное несовершенным шифром всегда можно однозначно дешифровать, если криптоаналитик располагает достаточным по объему шифротекстом и неограниченными вычислительными возможностями, является чрезмерно грубым упрощением и в общем случае неверно.

Все дело в том, что повысить вероятность успешного дешифрования и сделать ее равной единице не одно и то же. Данную мысль легко проиллюстрировать на примере: пусть зашифрованию подвергается некий массив битов, ключ имеет размер один бит и шифрование осуществляется по следующим правилам:

· если ключ равен 0, то инвертируются нечетные по номеру биты исходного текста, нумерация слева направо;

· соответственно, если ключ равен 1, то инвертируются четные по номеру биты исходного текста.

Таким образом, E0(01) = 11, E1(01) = 00. Очевидно, что наш шифр не обладает абсолютной стойкостью. Предположим, что перехвачена шифровка «10». Каков исходный текст? Понятно, что он может быть как 00 так и 11 в зависимости от значения ключа, и без дополнительной информации однозначно определить это невозможно, что и требовалось доказать. Конечно, приведенный пример «игрушечный», но он верно отражает суть дела: для более серьезных шифров у криптоаналитика будет просто больше «вариантов выбора» открытого текста, и никаких указаний на то, какой из них предпочесть.

Таким образом, вопрос о возможности однозначного дешифрования сообщения, зашифрованного несовершенным шифром, остается открытым. Когда же такое дешифрование возможно? Шеннон в своих работах подробно исследовал этот вопрос. Для анализа он ввел в рассмотрение следующие характеристики шифра, в целях упрощения изложения здесь они приведены в варианте битового представления данных:

1. Функция ненадежности ключа – неопределенность ключа при известных n битах шифротекста: f(n) = H(K|С), где |С| = n. Понятно, что функция ненадежности ключа f(n) может быть неопределена для некоторых n.

2. Расстояние единственности шифра – такое значение n, при котором функция ненадежности, то есть неопределенность ключа становится близкой к 0: U(E) = n, где f(n) ~ 0.

Шеннон показал, что обе определенные выше величины зависят от избыточности открытого текста, причем расстояние единственности прямо пропорционально размеру ключа и обратно пропорционально избыточности:

,

где избыточность исходного текста R определяется следующим соотношением:

,

оно измеряет количество «статистических ограничений», налагаемых языком.

Сказанное означает, что полностью устранив избыточность открытого текста, мы сделаем невозможным его однозначное дешифрование на основе знания только соответствующего шифротекста, даже если в распоряжении криптоаналитика имеются неограниченные вычислительные возможности. При этом неопределенность исходного текста будет равна неопределенности, и, следовательно, размеру ключа:

H(T) = H(K) =ïKï.

Полное отсутствие избыточности в исходном тексте означает, что какой бы мы не взяли ключ, после расшифрования мы получим «корректные» исходные данные, и оснований предпочесть один вариант другому просто не будет. Из этого, в частности, следует, что в реальной практике перед зашифрованием данные весьма полезно «ужать» архиватором. Конечно, полная безызбыточность исходного текста недостижима, однако такое «ужатие» очень сильно затруднит некоторые виды криптоанализа.