рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Форматы команд ЭВМ

Форматы команд ЭВМ - раздел Компьютеры, Темы лекций по ЭВМ. Основные характеристики ЭВМ В Команде, Как Правило, Содержатся Не Сами Операнды, А Информация Объект Адре...

В команде, как правило, содержатся не сами операнды, а информация объект адресах ячеек памяти или регистрах, в которых они находятся. Код команды можно представить состоящим из нескольких полей, каждое из которых имеет свое функциональное назначение.

В общем случае команда состоит из:

¨ операционной части (содержит код операции);

¨ адресной части (содержит адресную информацию о местонахождении обрабатываемых данных и месте хранения результатов).

В свою очередь, эти части, что особенно характерно для адресной части, могут состоять из нескольких полей.

Структура команды определяется составом, назначением и расположением полей в коде.

Форматом команды называется заранее оговоренная структура полей ее кода с разметкой номеров разрядов (бит), определяющих границы отдельных полей команды, или с указанием числа разрядов (бит) в определенных полях, позволяющая ЭВМ распознавать составные части кода.

Важной и сложной проблемой при проектировании ЭВМ является выбор структуры и форматов команды, т.е. ее длины, назначения и размерности отдельных ее полей. Естественно стремление разместить в команде в возможно более полной форме информацию о предписываемой командой операции. Однако в условиях, когда в современных ЭВМ значительно возросло число выполняемых различных операций и соответственно команд (в компьютерах с CISC-архитектурой более 200 команд) и значительно увеличилась емкость адресуемой основной памяти (более 64 Мб), это приводит к недопустимо большой длине формата команды.

Вместе с тем, для упрощения аппаратуры и повышения быстродействия ЭВМ длина формата команды должна быть по возможности короче, укладываться в машинное слово или полуслово. Решение проблемы выбора формата команды значительно усложняется в микропроцессорах, работающих с коротким словом.

Проследим изменения классических структур команд.

Чтобы команда содержала в явном виде всю необходимую информацию о задаваемой операции, она должна, как это показано на рис. 1 (б), содержать следующую информацию: А1, А2 - адреса операндов, А3 - адрес результата, А4 - адрес следующей команды (принудительная адресация команд).

 

 

 

Рис. 1. Структуры команд: а) обобщенная, б) четырехадресная, в) трехадресная, г) двухадресная, д) одноадресная, е)безадресная

 

Такая структура приводит к большей длине команды и неприемлема для прямой адресации операндов основной памяти. В компьютерах с RISC-архитектурой четырехадресные команды используются для адресации операндов, хранящихся в регистровой памяти процессора.

Можно установить, как это принято для большинства машин, что после выполнения данной команды, расположенной по адресу К (и занимающей L ячеек), выполняется команда из (K+L)-ой ячейки. Такой порядок выборки команды называется естественным. Он нарушается только специальными командами (передачи управления). В таком случае отпадает необходимость указывать в команде в явном виде адрес следующей команды.

В трехадресной команде (рис. 1, в) первый и второй адреса указывают ячейки памяти, в которых расположены операнды, а третий определяет ячейку, в которую помещается результат операции.

Можно условиться, что результат операции всегда помещается на место одного из операндов, например первого. Получим двухадресную команду (рис. 1, г), т.е. для результата используется подразумеваемый адрес.

В одноадресной команде (рис. 1, д) подразумеваемые адреса имеют уже и результат операции и один из операндов. Один из операндов указывается адресом в команде, в качестве второго используется содержимое регистра процессора, называемого в этом случае регистром результата или аккумулятором. Результат операции записывается в тот же регистр.

Наконец, в некоторых случаях возможно использование безадресных команд (рис. 1, е), когда подразумеваются адреса обоих операндов и результата операции, например, при работе со стековой памятью.

С точки зрения программиста, наиболее естественны и удобны трехадресные команды. Обычно в ЭВМ используется несколько структур и форматов команд разной длины. Приведенные на рис. 1. структуры команд достаточно схематичны. В действительности адресные поля команд большей частью содержат не сами адреса, а только информацию, позволяющую определить действительные (исполнительные) адреса операндов в соответствии с используемыми в командах способами адресации.

 

13.Способы адресации(в книге 237)

14. Тэги и дескрипторы(в книге 253)

15.RISC архитектура(в книге 269)

Для решения проблем, присущих CISC-архитектуре была разработана новаяRISC-архитектура с сокращенным набором машинных команд. RISC(Reduced Instruction Set Computer - вычислитель с сокращенным набором инструкций). В набор команд RISC-архитектуры вошли только основные элементарные микрооперации, что позволило унифицировать формат команд вычислительного ядра, упростить конструкцию и снизить стоимость изготовления вычислительных ядер. Разработчиками было принято решение сравнять время выполнения всех машинных команд, что упростило расчет времени выполнения программ, а самое главное позволило реализоватьконвейерную обработку инструкций .

Уменьшение набора машинных команд в RISC-архитектуре позволило разместить на кристалле вычислительного ядра большое количество регистров общего назначения . Увеличение количества регистров общего назначения позволило минимизировать обращения к медленной оперативной памяти, оставив для работы с RAM только операции чтения данных из оперативной памяти в регистр и запись данных из регистра в оперативную память, все остальные машинные команды используют в качестве операндов регистры общего назначения.

Основными преимуществами RISC-архитектуры является наличие следующих свойств:

  • Большое число регистров общего назначения.
  • Универсальный формат всех микроопераций.
  • Равное время выполнения всех машинных команд.
  • Практически все операции пересылки данных осуществляются по маршруту регистр – регистр.

Равное время выполнения всех машинных команд позволяют обрабатывать поток командных инструкций по конвейерному принципу, т.е. выполняется синхронизация аппаратных частей с учетом последовательной передачи управления от одного аппаратного блока к другому.

Аппаратные блоки в RISC-архитектуре:

  • Блок загрузки инструкций включает в себя следующие составные части: блок выборки инструкций из памяти инструкций, регистр инструкций, куда помещается инструкция после ее выборки и блок декодирования инструкций. Эта ступень называется ступенью выборки инструкций.
  • Регистры общего назначения совместно с блоками управления регистрами образуют вторую ступень конвейера, отвечающую за чтение операндов инструкций. Операнды могут храниться в самой инструкции или в одном из регистров общего назначения. Эта ступень называется ступенью выборки операндов.
  • Арифметико-логическое устройство и, если в данной архитектуре реализован, аккумулятор , вместе с логикой управления, которая исходя из содержимого регистра инструкций определяет тип выполняемой микрооперации. Источником данных помимо регистра инструкций может быть счетчик команд, при выполнении микроопераций условного или безусловного перехода. Данная ступень называется исполнительной ступенью конвейера.
  • Набор состоящий из регистров общего назначения, логики записи и иногда из RAM образуют ступень сохранения данных. На этой ступени результат выполнения инструкций записываются в регистры общего назначения или в основную память.

Однако к моменту разработки RISC-архитектуры, промышленным стандартоммикропроцессоров де-факто стала архитектура Intel x86, выполненная по принципу CISC-архитектуры. Наличие большого числа программ, написанных под архитектуру Intel x86, сделала невозможным массовый переход ЭВМ на RISC-архитектуру. По этой причине основной сферой использования RISC-архитектуры явились микроконтроллеры , благодаря тому, что они не были привязаны к существующему программному обеспечению. Кроме того некоторые производители ЭВМ во главе с IBM так же начали выпускать ЭВМ, построенные по RISC-архитектуре, однако несовместимость программного обеспечения между Intel x86 и RISC-архитектурой в значительной степени ограничивала распространение последних.

Однако, преимущества RISC-архитектуры были столь существенны, что инженеры нашли способ перейти на вычислители, выполненные по RISC-архитектуре, при этом не отказываясь от существующего программного обеспечения. Ядра большинство современных микропроцессоров, поддерживающих архитектуру Intel x86, выполнены по RISC-архитектуре с поддержкой мультискалярной конвейерной обработки. Микропроцессор получает на вход инструкцию в формате Intel x86, заменяем ее несколькими (до 4-х) RISC-инструкциями.

Таким образом, ядра большинства современных микропроцессоров, начиная с Intel 486DX, выполнены по RISC-архитектуре с поддержкой внешнего Intel x86 интерфейса. Кроме того, подавляющее большинство микроконтроллеров, а так же некоторые микропроцессоры выпускаются по RISC-архитектуре.

 

16. Принцип организации систем прерывания(в книге 274)

 

– Конец работы –

Эта тема принадлежит разделу:

Темы лекций по ЭВМ. Основные характеристики ЭВМ

Структурная схема ЭВМ... Основные характеристики ЭВМ Типовые узлы ЭВМ Принцип и организация устройств памяти...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Форматы команд ЭВМ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные характеристики ЭВМ
Структуру ЭВМ определяет следующая группа характеристик: · технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точ

Организация физической памяти
Физическая память, к которой микропроцессов имеет доступ по шине адреса, называется оперативной памятью (или оперативным запоминающим устройством - ОЗУ). ОП организ

Логическая структура основной памяти
Каждая ячейка памяти имеет свой уникальный (отличный от всех других) адрес. Основная память имеет для ОЗУ и ПЗУ единое адресное пространство. Адресное пространство определяет максимально в

Адресная, ассоциативная и стековая организация памяти
Запоминающее устройство, как правило, содержит множество одинаковых запоминающих элементов, образующих запоминающий массив. Массив разделен на отдельные ячейки; каждая из них предназначена для

Стековая память
Стековая память состоит из ячеек, связанных друг с другом разрядными цепями передачи слов. Обмен информацией всегда выполняется только через верхнюю ячейку – вершину стека. При записи н

ПРИНЦИПЫ ОРГАНИЗАЦИИ АЛУ
Арифметико-логические устройства (АЛУ) служат для выполнения арифметических и логических преобразований над словами, называемыми в этом случае операндами. Выполняемые в АЛУ операции можно

СТРУКТУРА АЛУ ДЛЯ СЛОЖЕНИЯ И ВЫЧИТАНИЯ ЧИСЕЛ С ФИКСИРОВАННОЙ ЗАПЯТОЙ
  Введение: Обычно в АЛУ операции алгебраического сложения сводятся к арифметическому сложению кодов чисел путем применения дополнительного или обратного кодов для представления отриц

Принципы организации
Заметим, что функция любого управляющего автомата — генерирование последовательности управляющих слов (микрокоманд), определенной реализуемым алгоритмом с учетом значений осведомительных сигналов.

СТРУКТУРА И ФОРМАТЫ КОМАНД ЭВМ
Обработка информации в ЭВМ осуществляется путём программного управления. Программа представляет собой алгоритм обработки информации, записанной в виде последовательности к

Рабочий цикл процессора.
На схеме показаны варианты рабочего цикла для четырех групп команд: 1. основных (арифметические, логические и пересылочные операции) 2. передачи управления 3. ввода-вывод

Принципы кэширования.
  В переводе слово кэш (cache) означает «тайный склад», «тайник» («заначка»). Тайна этого склада заключается в его «прозрачности» - для программы он не представляет собой допол

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги