Обратное соотношение между правильностью и точностью

 

Диалектика соотношения точности и правильности в развитии науки — интересная философская и эпистемологическая проблема. Применительно к биологии она глубоко обсуждается в работах А Любищева (1982, 2000). В области математической статистики и биометрии известна антитеза: увеличивая точность, мы теряем правильность, при стремлении к правильности, полноте картины излишняя точность может быть нежелательна (Баранцев, Калинин, 1982).

В философском и историко-научном аспекте проблема соотношения точности и правильности отражает две традиции в познании: стремление к математизации знания и натурфилософское стремление к целостности видения (Шрейдер, 1982). Точность описания связана с верифицируемостью, а правильность — с глубиной проникновения в суть явления.

Поучительным примером тонкого соотношения между правильностью и точностью может служить полемика В. Иогансена с Ф. Гальтоном и К. Пирсоном, основателями биометрии. Последние еще до Г. Менделя на основании одних только статистических методов предложили свою концепцию наследования признаков, которая оказалась ложной в отношении чистых линий. Вывод В. Иогансена: "В каждом отдельном случае статистической обработке должен предшествовать биологический анализ, иначе общий результат окажется биологическим не ценным, т. е. лишь "статистической ложью". Математика должна оказывать помощь, а не служить в качестве руководящей идеи" (Иогансен, 1933, с. 103).

Существуют определенные пределы необходимости устанавливать точность фактов. М. Полани приводит поучительный пример из истории физики. В 1914 г. У. Т. Ричардсу присудили Нобелевскую премию за высокоточное определение атомных весов, и с тех пор его результаты никогда не оспаривались. Однако после открытия изотопов, входящих в состав разных природных элементов в разных соотношениях, ценность подобных расчетов резко изменилась. И в 1932 г. Фредерик Содди писал, что подобные измерения "представляют интерес и значение не больше, чем если определить средний вес коллекции бутылок, из которых одни полные, а другие в той или иной мере опорожнены" (цит.: Полани М., 1985, с. 198).

Подобная же ситуация случилась в геносистематике — направлении, появившемся в 60-е годы и основанном на приложении молекулярных методов сопоставления степени сходства и различия в структуре ДНК и белков у разных видов. На бактериях было показано, что метод гибридизации ДНК позволяет количественно оценить степень сходства двух нитей ДНК и долю гомологичных последовательностей. В середине 70-х годов господствовало убеждение: что верно для бактерии, то верно для слона. Имплицитно основываясь на этом принципе, было выполнено множество работ по тотальной гибридизации препаратов ДНК на высших организмах (эукариотах) с целью сопоставить характер эволюции на уровне ДНК и морфологическом. Предполагалось, что любые изменения в ДНК имеют эволюционные последствия, и причем они первостепенны, важнее морфологических и иных. Однако, когда было выполнено множество опытов по оценке сходства тотальной ДНК, неожиданно стало ясно, что у эукариот до 90% генома могут составлять не входящие в состав генов повторенные последовательности, количество и топография которых могут значительно варьировать даже у разных особей одного вида. И таким образом точный молекулярный метод тотальной гибридизации ДНК стал давать сбои в смысле правильности и надежности его использования для оценки филогенетического родства организмов (Антонов, 1983).

Сходные трудности выявились и при использовании белковой таксономии или сопоставлении аминокислотных последовательностей определенных белков. Концептуальный анализ методов геносистематики привел одного из инициаторов этого направления к справедливому выводу: "Без знания основных принципов эволюции ДНК мы никогда не сможем выяснить закономерности эволюции белков, а стало быть, и отличить факт от артефакта в белковой таксономии. Многообразие эволюции генотипов может проявляться в непредсказуемых отклонениях скорости накопления изменений в структуре индивидуальных белков в отдельных филетических линиях" (Антонов, 1983, с. 54).

Когда же эта трудность была осознана и точные методы были применены к сопоставлению заведомо консервативных фракций рибосомной РНК, то в лаборатории Карла Везе в США было сделано выдающееся открытие: выделение архебактерий в новое царство живых организмов (Woese, 1987). В дальнейшем К. Везе обосновал необходимость построения новой системы живых организмов на Земле. Он предложил концепцию новой высшей таксономической единицы (выше царства), названной "домен" (domain). Три основных домена таковы: Bacteria, Archaea и Eucarya. Каждый из доменов включает два или более царств (Woese, Kandler, Wheelis, 1990).

Важные эволюционные выводы сделаны и в области молекулярной филогенетики голосеменных и покрытосеменных растений, когда в ходе многолетних работ были накоплены и сопоставлены данные по скорости нуклеотидных замен не по одному, а сразу по нескольким рибосомным генам. Результаты молекулярной палеогенетики привели к выводу о монофилии двух основных групп растений и к тому, что их разделение произошло очень давно, около 350 млн. лет назад. По любым масштабам — задолго до того, как сформировались все ныне живущие и вымершие группы голосеменных растений. И тут возникло трудное несоответствие: классические палеоботаники не находят никаких следов появления покрытосемянных ранее чем 140 млн. лет назад. Предстоит решить: надо ли тщательно искать следы прародича покрытосемянных или же данные молекулярной филогенетики плохо отражают реальный ход эволюции и, как метафорически писал Любищев, некоторые деревья придется пустить на дрова? (Антонов, 2000). Достижение согласия между феносистематикой и геносистематикой — трудная, необходимая и реальная задача. Здесь важен диалог и осознание дилеммы правильности и точности.