рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция 21. Системы электроснабжения. Определения, терминология.

Лекция 21. Системы электроснабжения. Определения, терминология. - раздел История, ИСТОРИЯ ЭЛЕКТРОЭНЕРГЕТИКИ   Электроустановками – Называются Электрические Машины, Линии И...

 

Электроустановками – называются электрические машины, линии и вспомогательное оборудование (вместе с сооружениями и помещениями, в которых они установлены), предназначенные для производства, трансформации, передачи электроэнергии и преобразования ее в другой вид энергии.

Электрическими станциями – называются предприятия или установки, предназначенные для производства электрической энергии.

Электрическими подстанциями – называются электроустановки, предназначенные для преобразования и распределения электрической энергии.

Системой собственных нужд (ССН) – называются механизмы и установки, обеспечивающие нормальное функционирование электрических станций (дымососы, вентиляторы, дробилки и так далее).

Воздушные линии электропередач (ВЛЭП) – это устройства, предназначенные для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным, при помощи изоляторов и арматуры, к опорам и кронштейнам или стойкам на инженерных сооружениях (мостах, путепроводах и так далее).

Кабельная линия (КЛ) – это линия для передачи электрической энергии или ее импульсов, состоящая из одного или нескольких кабелей с соединительными, штопорными и кольцевыми муфтами, и крепежными деталями.

Токопроводом (ТП)– называется устройство, предназначенное для передачи электрической энергии или отдельных ее импульсов, состоящее из неизолированных и изолированных проводников, и относящихся к ним изоляторов, защитных оболочек, ответвительных устройств, поддерживающих и опорных конструкций. В зависимости от вида проводников токопроводы подразделяются на гибкие и жесткие.

Система сборных шин (ССШ) – это комплекс токоведущих частей, предназначенных для приема и распределения электрической энергии.

Распределительным устройством (РУ) – называется электроустановка, служащая для приема и распределения электрической энергии, и содержащая сборные, соединительные шины, вспомогательные устройства, а также устройства защиты, автоматики и измерительные приборы.

Электрической сетью (ЭС) – называется совокупность электроустановок, предназначенных для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, трансформаторных подстанций, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Приемником электрической энергии (ПЭЭ) – называется механическая машина (аппарат, агрегат), предназначенная для преобразования электрической энергии в другой вид энергии.

Потребителем электрической энергии (ПЭЭ) – называется приемник или группа приемников электрической энергии, объединенных технологическим процессом и размещенных на определенной территории.

Энергетической системой называется совокупность электрических станций, электрических и тепловых сетей, предназначенных для производства, передачи, распределения электрической энергии.

Например: Омская энергосистема (АК «Омскэнерго») включая ТЭЦ2, ТЭЦ5 и строющуюся ТЭЦ6, а также электрические связи линиями электропередач 500кВ с Казахстаном, Новосибирской системой и Уралом. Таким образом Омская энергосистема является частью объединенной энергосистемы России и СНГ с диспетчерским центром управления, находящимся в Москве.

Электроэнергетической системой называют электрическую часть энергосистемы для производства, передачи, распределения и потребления электрической энергии.

Рис. 20.1 – Структурная схема системы электроснабжения

 

ИП – источник питания;

ПС – питающая сеть;

ППЭ – пункт приема электрической энергии;

РС – распределительная сеть внутри предприятия;

РП – распределительные пункты;

ТП – цеховые трансформаторные подстанции;

ЭП – электроприемники.

Электроснабжением – называется обеспечение потребителей электрической энергией.

Системой электроснабжения – называется совокупность электроустановок, предназначенная для обеспечения потребителей электрической энергией; это часть электроэнергетической системы в которую входят: устройства передачи и распределения электрической энергии ее приемникам. Очевидно, что в систему электроснабжения не входят источники питания и электроприемники. Систему электроснабжения условно делят на две части, или подсистемы. Принято называть их так же системами: С1 – внешняя, С2 – внутренняя.

В систему питания входят питающие сети; это, как правило, ВЛЭП, напряжением 35-110-220-330-500кВ.

Пример: часть нагрузок Нефтезавода питается по кабельной линии 35кВ.

Пункт приема электрической энергии (ППЭ) – понижающие подстанции, на которых установлены трансформаторы, с напряжением питания первичных обмоток соответствующих подстанций, а на вторичных 6 или 10кВ. Это напряжение и подается в распределительную сеть.

Пункт приема электрической энергии часто ставят на территории предприятия, как можно ближе к электроприемникам. Тогда эта подстанция и вся система носит название «глубокого ввода». Например: так сделано на Сибзаводе (ЛЭП 110кВ). трансформаторы таких подстанций (их называют ПГВ – подстанции глубокого ввода) в большинстве случаев устанавливают открыто (на улице), но распределительные устройства 6 или 10кВ располагаются, как правило, внутри помещений.

Распределительные сети (РС) – это кабельные линии 6-10кВ, проложенные на территории объекта, либо в земле, либо, что представляется более перспективно, по воздуху на специальных устройствах – эстакадах. Кабельные линии подходят к цеховым подстанциям, где напряжение понижается до 380В (либо 660В). Для питания электроприемников напряжением 6-10кВ, сооружаются закрытые распределительные устройства (ЗРУ), задача которых питать электроприемники 6-10кВ.

Если распределительная сеть 10кВ, а некоторые приемники имеют номинальное напряжение 6 кВ, то, в таких случаях, для этих электроприемников устанавливают еще свои трансформаторы, напряжением 10/6кВ, то есть понижающие от 10 до 6кВ.

Электрическая схема электроустановки – это графическое изображение порядка соединений элементов оборудования, с помощью условных символов, в точном соответствии с действительностью.

Главной схемой соединений электрических станций и подстанций – называют схему электрических и трансформаторных соединений между основными ее элементами, связанными с производством, преобразованием и распределением электрической энергии. На чертеже все элемента схемы обозначаются условными символами. Анализируя главную схему можно оценить надежность, маневренность, экономичность станций и подстанций. Главные схемы представляются обычно в однолинейном представлении, то есть показываются электрические соединения элементов одной фазы (о наличии трех фаз можно, обычно, судить по условным обозначениям силовых трансформаторов, трансформаторов тока, некоторых типов трансформаторов напряжения). К элементам главной схемы относятся: генераторы (для станций), трансформаторы, шины, провода, линии электропередач, разъединители, выключатели, реакторы, измерительные трансформаторы, а также некоторые электроприемники, соизмеримые по мощности с силовым электрооборудованием подстанций. Пример: двигатели, дуговые печи и так далее.

 

Основные требования к системам электроснабжения (СЭС)

При проектировании систем электроснабжения должны быть выполнены три основных требования:

1. Надежность, то есть бесперебойность питания, особенно: электроприемников, наиболее ответственных в технологическом процессе предприятия, а также соблюдение соответствующих стандартов качества электрической энергии.

Пример: величины напряжения, частоты переменного тока, формы кривой напряжения, симметрии по фазам трехфазных сетей и так далее (всего таких показателей – десять основных и три дополнительных).

2. Экономичность, то есть имеется в виду минимум расчетных затрат на сооружение и эксплуатацию систем электроснабжения.

3. Безопасность при эксплуатации.

 

– Конец работы –

Эта тема принадлежит разделу:

ИСТОРИЯ ЭЛЕКТРОЭНЕРГЕТИКИ

Государственное образовательное учреждение... Высшего профессионального образования... Омский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция 21. Системы электроснабжения. Определения, терминология.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 3. Электрический ток. Электрическое поле
  Электрический ток – это упорядоченное движение электрических зарядов. Для возникновения электрического тока необходимо (рис. 3.1): 1) наличие свободных зарядов;

Лекция 4. ЭДС источника электрической энергии. Напряжение
  ЭДС источника электрической энергии численно равна работе сторонних сил по перемещению единичного положительного заряда с отрицательного к положительному источнику полюса, т.

Постоянные и мгновенные значения тока, напряжения и ЭДС
Так как ток, напряжение, ЭДС могут быть постоянными и переменными, то для отражения этого факта используют различные обозначения. Мгновенные значения тока, напряжения, ЭДС принято обознача

Лекция 5. Идеализированные элементы электрической цепи
Таблица 5.1 Идеализированные элементы электрической цепи № Название идеализированного элемента Графическое изображение Буквен

Характеристики переменного тока
  Для однозначного описания процессов в электрической цепи необходимо знать не только значение величин, но и направление этих величин. За направление тока принято движение по

Второй закон Кирхгофа
Алгебраическая сумма падений напряжений в любом замкнутом контуре численно равна алгебраической сумме ЭДС, действующих в этом контуре:  

Метод векторных диаграмм
Этот метод используется для лучшего понимания и наглядности представления процесса, изменяющегося по гармоническому закону. Суть метода: переменные величины

Лекция 7. Действующее значение переменного тока. Связь между током и напряжением в элементах электрической цепи тока
  Действующее значение переменного тока равно такому значению постоянного тока, которое за время, равное периоду переменного тока, выделяет в том же сопротивлении такое же количество

Активное сопротивление
Пусть имеется цепь переменного тока (рис. 7.3).

Индуктивность
  Рис. 7.5. Электрическая цепь c индукт

Емкость
  Рис. 7.7. Электрическая цепь с емкостью

Лекция 9. Мощность цепи переменного тока
Из определения разности потенциалов следует, что работа электрического поля по перемещению положительного заряда из точки А с потенциалом

Лекция 10. Трехфазные электрические цепи
Электрическая цепь, в которой действует одна ЭДС, называется однофазной. Многофазные электрические цепи – это цепи, в которых имеются несколько ЭДС одинаковой частоты, сдвинутые относитель

Принцип действия синхронного генератора
При вращении ротора, его магнитное поле пересекает витки статора и по закону электромагнитной индукции наводит в них ЭДС, смещенные относительно друг друга по фазе на 120° (рис. 10.1). &nb

Связь линейного напряжения с фазным
  Допустим, что рассматривается симметричная трехфазная система, т.е.

Связь линейного и фазного тока
Рассмотрим часть приведенной схемы (рис.10.4), относящейся к фазе А. Из рисунка следует, что IАФ=IА. Аналогично IВФ= IВ, IСФ= IС

Мощность в трехфазных цепях переменного тока
Активная мощность трехфазного симметричного приемника электрической энергии состоит из трех составляющих

Принцип действия трансформатора
При подключении первичной обмотки на напряжение u1в обмотке возникает переменный ток i1, который создает в сердечнике переменный магнитный поток Ф1. Этот магнитный

Коэффициент трансформации трансформатора
  Из теории трансформаторов следует, что U1 ≈ E1. Поделим выражения (11.2) на (11.3):

Саморегулирование магнитного потока трансформатором
  При эксплуатации трансформатора в системах электроснабжения выполняется следующие условия : ƒ = const, U1 = const. Отклонение напряжения

Трехфазные силовые трансформаторы
Подразделяются: · на групповые; · трехстержневые. Групповые трансформаторы – это трансформаторы с отдельным для каждой фазы сердечником (рис .11.3).

Энергетическая диаграмма трансформатора
  Рассмотрим однофазный двухобмоточный трансформатор.

Зависимость коэффициента полезного действия от нагрузки
Для описания этой зависимости вводится понятие – коэффициента загрузки трансформатора, который определяется по формуле

Лекция 13. Электрические машины
Электрические машины – это электротехнические устройства, предназначенные для преобразования электрической энергии в механическую (двигатель), или механической в электрическую (генератор).

Лекция 14. Устройство машин переменного тока
Из законов Ампера и Фарадея следует, что в основу принципа действия любой электрической машины упрощенно могут быть положены эти законы. Из них следует, что в любой электрической машине должна быть

Электрические машины переменного тока
К электрическим машинам переменного тока относятся синхронные и асинхронные машины. Синхронные машины – это электрические машины, в которых вращающееся магнитное поле статора и ротор

Конструктивное исполнение электрических машин переменного тока
  Статор электрических машин переменного тока несет на себе двух- или трехфазную обмотку, которая подключается соответственно к двух- или трехфазной сети переменного тока. Назначение

Конструкция роторов электрических машин переменного тока
  Отличаются электрические машины переменного тока в основном конструкцией исполнения ротора. Роторы синхронных машин выполняются из электротехнической стали и подразделяются

Роторы асинхронных машин
Короткозамкнутый ротор набирается из пластин электротехнической стали, изолированных друг от друга. В пазах находится обмотка. Если выполнить сечение перпендикулярно к оси ротора, то получается сле

Лекция 15. Принцип действия асинхронного двигателя
При подключении обмотки статора к сети переменного тока в статоре практически мгновенно возникает вращающееся магнитное поле.  

Однофазный асинхронный двигатель
Рассмотрим электрическую схему однофазного асинхронного двигателя с одной обмоткой на статоре. Однофазный асинхронный двигатель – это асинхронный двигатель, подключенный к однофазной сети переменно

Лекция 16. Электрические машины постоянного тока
Машина постоянного тока – это электротехническое устройство представляющее собой, объединенные в единую конструкцию синхронную машину (СМ) и коммутатор (К). Коммутатор – элемент электричес

Принцип действия генератора постоянного тока
При вращении якоря со скоростью ω от какого-либо внешнего устройства в проводниках по закону электромагнитной индукции наводится ЭДС, а так как обмотка замкнута на нагрузку, то по ней течет то

Лекция 17. Машины постоянного тока
Вентильный генератор постоянного тока   Принцип действия. При вращении индуктора в проводниках обмотки якоря по зако

Лекция 18. ЭДС обмотки якоря
Число полюсов индуктора равно четырем. Вводится р – число пар полюсов. Для этого статора р = 2, а 2р = 4;  

Регулирование скорости двигателя постоянного тока
1. Уравнение баланса напряжений в цепи якоря (см. (17.10) имеет вид Ея = Uс – Iя(Rд + Rп + Rя), (18.1) При работе

Якорный способ
Пусть UС меняется следующим образом: (уменьшаем напряжение), так как при

Полюсное регулирование
Пусть Ф изменяется согласно неравенству ФНОМ > Ф1 > Ф2. из уравнения следует, что при уменьшении Ф, коэффициенты А и В увеличиваются, а IП=const. Т

Реостатное регулирование
Пусть RД изменяется следующим образом: RД НАЧ<RД1<RД2 , RД НАЧ = 0. Из уравнения (18.10) следует, что при изменении RД коэффи

Лекция 20. Измерительные трансформаторы тока и напряжения
Измерительные трансформаторы тока и напряжения используются для преобразования и передачи электрических сигналов из первичной (силовой) цепи во вторичную (слаботочную) цепь. В результате цепи перви

Трансформатора тока
  Трансформатор тока (рис. 19.1) состоит из сердечника, выполненного из высококачественной листовой электротехнической стали, первичной обмотки с числом витков W1, вторично

Особенности эксплуатации трансформаторов тока
Известно, что у силовых трансформаторов существует свойство саморегулирования магнитного потока сердечника Фс (рис. 19.2), иначе можно записать Фс = Ф1 – Ф

Измерительные трансформаторы напряжения
  Трансформаторы напряжения применяются для питания обмотки вольтметра и реле в устройствах переменного тока при напряжении U ≥ 380В. Трансформатор напряжения состоит из сердечн

Принцип построения систем электроснабжения
Построение систем электроснабжения осуществляется по ряду основных принципов. Эти принципы можно сгруппировать, или сформулировать следующим образом: 1. Максимальное приближение источника

Лекция 23. Основные термины и понятия в области энергосбережения
Энергосбережение – это:   1) подъем производства; 2) увеличение доходов населения; 3) охрана окружающей среды.   В Рос

Лекция 24. Основные мероприятия и принципы энергосбережения
  1. Энергетическая паспортизация всех предприятии независимо от форм собственности. Наличие энергетического паспорта позволяет сократить затраты на оплату энергоресурсов практически

При энергосбережении
  Стоимость энергоресурсов складывается на предприятии из платы за электрическую, тепловую энергию и топлива прямого использования. В ряде случаев сюда относят сжатый воздух, пар и т.

Лекция 25. Уравнение Максвелла. Вихревое электрическое поле.
  Из закона Фарадея: , (23.1) следует, что изменение

Ток смещения
3. Всякое изменение электрического поля вызывает появление в окружающем пространстве вихревого магнитного поля. 4. Так как источником магнитного поля является электрический ток, то перемен

Особенности тока смещения
Рассмотрим электрическую цепь переменного тока: Рис. 23.1 - Элект

Лекция 26. Закон изменения напряжения на обкладках конденсатора
  ; (24.1)

Напряженность электрического поля внутри конденсатора
, (24.5) где

Лекция 28. Компенсация реактивной мощности
Вопрос о компенсации реактивной мощности является одним из основных вопросов, решаемых как на стадии проектиро­вания, так и на стадии эксплуатации систем промышленного электро­снабжения, и вклю­чае

Цели и задачи дисциплины
Данная дисциплина призвана подтвердить правильность выбора студентами своей будущей профессии, пробудить интерес к изучению других дисциплин связанных с электричеством, электротехникой, электроэнер

Рекомендуется для удобства работы распечатать этот материал
Для подготовки к сдаче экзамена и зачета необходимо: 1. Уметь ответить на контрольные вопросы, (см. файл «Контрольные вопросы»). Для подготовки ответов на контрольные вопр

Рекомендации для сдачи зачета и экзамена
Для стимулирования систематической работы студентов в течении семестра обучение на 1 курсе проводится по модульно-рейтинговой системе. Основные моменты такой методики изложены в д

СЕМЕСТР
  1 неделя рубежного контроля 12-17 октября:   Практическая работа (дополнительная) (2,4 балла) а) посе

СЕМЕСТР
  1 неделя рубежного контроля 15-20 марта: Практическая работа (дополнительная) (2,4 балла)

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10
1. Саморегулирование магнитного потока трансформатора. (Л.12 фор.11.15 стр.41,см.также фор. 11.1-11.11 стр.39-40) 2. Определение напряженности электрического поля. Потенциал элект

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 25
1. Связь между током и напряжением на индуктивности. (Л.7 рис.7.5-7.6 фор.7.19-7.27 стр.24-25,знать 2-ой закон Кирхгофа Л.6 фор.6.2 рис.6.3 стр.17-18, закон Фарадея Л.13 фор. 12.7-12.9) 2.

Технические средства обучения и контроля.
5.1.1 Использование учебных плакатов. Плакаты: 1. Электрическое сопротивление. 2. Последовательное соединение резистора и конденсатора. 3. Последовательное соединение рез

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги