рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Энергия фотона

Энергия фотона - Лекция, раздел История, ЛЕКЦИЯ N 1 • Краткие исторические сведения. Тепловое излучение. Излучение абсолютно черного тела. Закон Кирхгофа. Итоги лекции N 1 ...

 

4. Импульс фотона

здесь k = ω/c - волновое число; - волновой вектор.

Выражения для импульса фотона следует из релятивистского инварианта с учетом того, что масса фотона mγ = 0. В самом деле, из (Ч. 1, (12.9)) для фотона с энергией ε имеем:

Так как для фотона m ≡ mγ = 0, то

§ 2. Неделимость фотона

Фотон частоты ω всегда регистрируется как частица, несущая энергию . Нельзя получить фотоны той же самой частоты ω, но с энергией ε' = ε/2! Рассмотрим мысленный опыт с полупрозрачным зеркалом, разделяющим пучок света интенсивностью I на две части, интенсивностью I/2 каждая. Схема этого мысленного опыта изображена на рисунке 5.1.

Рис. 5.1

Предположим, что сначала интенсивность света I велика. Тогда по величине фототока i фотоэлементов 1 и 2 можно судить об интенсивностях пучков I1 и I2. Такой опыт можно проделать реально и убедиться в том, что наше полупрозрачное зеркало действительно делит интенсивный пучок пополам. Разумеется надо подобрать фотоэлемент с работой выхода , это условие необходимо для наблюдения фотоэффекта.

Теперь изменим условие опыта. Пусть интенсивность пучка, идущего от источника света, так мала, что фотоны проходят через нашу установку поодиночке. Пусть соотношение между работой выхода и энергией фотона удовлетворяет еще одному условию: Вместе с предыдущим условием мы имеем:

Рис. 5.2

Как видно на изображенной энергетической схеме фотоэффекта, целый фотон с энергией ε вызовет фотоэффект и фотоэлемент сработает половина же фотона не сможет заставить сработать фотоэлемент Логическипри прохождении одиночных фотонов возможны два варианта.

Первый вариант: каждый фотон делится пополам, так что после полупрозрачного зеркала энергия разделенных фотонов ε' = ε/2. Тогда фотоэлементы 1 и 2 перестают срабатывать. Но, если в этом случае убрать полупрозрачное зеркало, то целые фотоны с энергией попадут на фотоэлемент 1 и он будет срабатывать.

Второй вариант: фотон не делится зеркалом пополам, а либо целиком попадает на фотоэлемент 1, либо, целиком же, попадает на фотоэлемент 2, заставляя их срабатывать попеременно.

Реальные опыты с фотонами показывают, что в действительности осуществляется второй вариант: фотон неделим!

§ 3. Интерференция одиночных фотонов

Дополним нашу установку по "расщеплению" фотонов еще одним элементом: зеркалом, отражающим второй пучок так, чтобы он встретился с первым. В месте встречи поставим экран наблюдения, вдоль которого расположим достаточно маленькие фотоэлементы, но их размер Δх должен быть больше, чем длина волны света λ.

Рис. 5.3

При большой интенсивности пучка I мы получим на экране наблюдения интерференционную картину от двух источников с чередованием максимумов и минимумов интенсивности. Ее можно наблюдать непосредственно, а можно зафиксировать с помощью нашей системы фотоэлементов, скажем, в памяти компьютера.

Что произойдет, если интенсивность пучка опять сделать такой же малой, как и во второй части опыта по "расщеплению" фотонов, так, чтобы фотоны проходили нашу установку поодиночке?

Получим мы в этом случае интерференционную картину или нет?

Как мы знаем, интерференционная картина возникает от наложения двух (или больше) когерентных волн света (электромагнитных волн). Если фотон совершенно неделим, то при прохождении одиночных фотонов накладываться друг на друга нечему. И в этом случае интерференционная картина не должна сформироваться, сколько бы времени мы не накапливали информацию о срабатывании наших фотоэлементов в памяти компьютера (вспомните заключительную часть высказывания Милликена (см. лекцию N 3, § 2).

Но опыт показывает, что с течением времени на экране наблюдения формируется интерференционная картина с тем же самым расположением максимумов и минимумов, как и при большой интенсивности света.

Что же делится в нашей установке пополам и накладывается друг на друга? Делится электромагнитная волна, связанная с фотоном! В зависимости от разности хода две волны усиливают или ослабляют друг друга. Фотоны, как показывает опыт, чаще попадают в те места, где интенсивность волны больше. Это и приведет с течением времени к формированию одиночными фотонами интерференционной картины.

§ 4. Вероятностная интерпретация плотности энергии
и интенсивности электромагнитной волны

Результаты мысленных экспериментов, рассмотренных в (§2) и (§3), позволяют сформулировать некоторые выводы.

1. Распространение фотонов в пространстве в некотором смысле правильно описывается уравнениями Максвелла для электромагнитной волны. Электромагнитная волна, падающая на полупрозрачное зеркало, действительно "расщепляется" на две волны, которые могут интерферировать друг с другом.

2. Величины и I ~ E2 в случае малой интенсивности волны (малых значений напряженности электрического поля E и индукции магнитного поля ) не могут быть истолкованы как плотность энергии и плотность потока энергии (интенсивность света). Величина w (также как и I) может быть сделана сколь угодно малой, а энергия, передаваемая фотоном фотоэлементу, всегда конечна и равна !

3. Правильная интерпретация величин, пропорциональных E2 и Н2, состоит в том, что они определяют вероятность обнаружения фотона в некоторой области пространства.

Таким образом, энергию переносит фотон, а электромагнитная волна дает только вероятность обнаружения этого фотона. Плотность энергии w одиночного фотона равна произведению энергии фотона на вероятность его нахождения в данной области пространства.

При очень большом числе фотонов (больших интенсивностях света) величина w дает среднюю плотность энергии, создаваемую этими фотонами.

Итоги лекции N 5

1. Корпускулярно-волновой дуализм микрообъектов заключается в том, что всем им (фотонам, электронам, протонам, нейтронам и т.д.) присущи одновременно и корпускулярные и волновые свойства.

2. Фотон - это элементарная частицы, квант электромагнитного излучения. Он обладает следующими свойствами:

3. Распространение фотонов в пространстве в некотором смысле правильно описывается уравнениями Максвелла для электромагнитных волн, при этом величины плотности энергии электромагнитной волны в вакууме:

и интенсивности

I ~ E2

- для одиночных фотонов определяют вероятность обнаружить фотон в некоторой области пространства.


 

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ N 1 • Краткие исторические сведения. Тепловое излучение. Излучение абсолютно черного тела. Закон Кирхгофа. Итоги лекции N 1

ЛЕКЦИЯ N Краткие исторические сведения Тепловое излучение Излучение абсолютно черного тела Закон Кирхгофа Итоги лекции N... ЛЕКЦИЯ N Проблема излучения абсолютно черного тела Формула Планка Закон... ЛЕКЦИЯ N Проблема фотоэффекта Уравнение Эйнштейна для фотоэффекта Итоги лекции N...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Энергия фотона

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина
§ 1. Проблема излучения абсолютно черного тела. Формула Планка Проблема излучения абсолютно черного тела состояла в том, чтобы

Закон Стефана-Больцманаи закон Вина
Из (1.11) для абсолютно черного тела, когда rω = f(λ,Т), получим энергетическую светимость R(T), интегрируя функцию f(ω,Т) (2.2) во всем интервале частот.

Проблема фотоэффекта
Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения. Такой фотоэффект называют внешним. Именно о нем мы будем говорить в эт

Итоги лекции N 3
1. Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения. 2. Экспериментальные исследования фотоэффекта, приведенного в 1900-1904 гг., показали, что

Боровская теория атома водорода
Атом водорода - простейший из всех атомов. Его ядро - элементарная частица протон. Масса протона в 1836 раз больше массы электрона, вследствие этого ядро в первом приближении можно считать неподвиж

Условие стационарности состояния атома - квантование момента импульса электрона L.
При движении электрона по круговой орбите радиуса rn (n = 1,2,3,...) его момент импульса Ln = mevrn должен быть кратен постоянной Планка, деленной на 2&#

Итоги лекции N 4
1. Уравнение движения электрона в планетарной модели атома, записанное на основе второго закона Ньютона, позволяет атому иметь любой размер, опыт же показывает, что размеры атомов порядка 10-1

Гипотеза де Бройля. Волновые свойства электронов
Согласно гипотезе де Бройля любой движущийся частице с энергией E и импульсом соответствует волна с частотой v = E/h, длиной волны λ = h/p и волновым вектором . Так же как в случае с фо

Соотношения неопределенностей являются следствием корпускулярно-волнового дуализма квантовых объектов.
Задолго до создания квантовой механики в оптике было известно соотношение между длиной цуга световой волны Δx и неопределенностью волнового числа этого цуга Δk:

Уравнение Шредингера
Волновое уравнение, позволяющее найти волновую функцию частицы, которая движется в заданном силовом поле, имеет следующий вид:

Решение уравнения Шредингера для простейших случаев: свободная частица и частица в бесконечно глубокой одномерной потенциальной яме
Для свободной частицы потенциальная энергия U ≡ 0. Уравнение Шредингера (7.3) в этом случае выглядит следующим образом:

Итоги лекции N 7
Волновое уравнение для функции Ψ получено в 1926 г. Э. Шредингером и носит его имя - уравнение Шредингера. Для одной частицы, Движущейся во внешнем поле, оно имеет следующий вид (см. (7.

Итоги лекции N 8
1. Формула (8.3) для энергии стационарных состояний атома водорода, полученная на основе уравнения Шредингера совпадает с аналогичной формулой (4.8), полученной в боровской теории атома водорода, т

Спин электрона. Принцип Паули. Фермионы и бозоны.
Как уже упоминалось в конце § 3 предыдущей лекции, спектральные линии атома водорода обнаруживают тонкую структуру. Тонкая структура присуща спектрам всех атомов. Для объясн

Объяснение температурной зависимости теплоемкостей газов
В части 4, лекции N 4 обсуждались графики экспериментальных зависимостей теплоемкости CV для двух газов: одноатомного аргона (Ar) и двухатомного водорода (H2). Ход графика для

Итоги лекции N 9
1. Электрон обладает собственным моментом импульса LS , не связанным с движением в пространстве. Модуль собственного момента импульса определяется спиновым квантовым числом

Электронный газ в модели одномерной бесконечно глубокой потенциальной ямы. Электронный газ в модели бесконечно глубокой трехмерной потенциальной ямы
Валентные электроны в металле могут довольно свободно перемещаться в пределах объема металлического образца. Потенциальная энергия электрона в пределах образца металла приблизительно постоянна, но

Электронный газ при T > 0. Распределение Ферми-Дирака
Рис. 11.1 На приведенных выше рисунках 11.1 изображена одномерная потенциальная яма, заполне

Результаты квантовой теории электропроводности металла
В Ч. 4 настоящего курса была приведена формула (6.9) для σ - удельной проводимости, полученная П. Друде в рамках классической теории электропроводности:

Бозоны. Распределение Бозе-Эйнштейна
Бозон - это частица или (квазичастица - как, например, фонон - квант упругих колебаний в твердых телах) с нулевым или целочисленным спином. К бозонам

Итоги лекции N 12
1. Квантовая теория электропроводности металлов дает для удельной проводимости σ формулу (12.2):

Происхождение энергетических зон в кристаллах. Металлы
Физически происхождение зонной структуры в кристалле связано с образованием кристалла из N атомов, каждый из которых в свободном состоянии обладает дискретным электронным энергетическим спектром (с

Собственная проводимость полупроводников
Из элементов таблицы Менделеева типичными полупроводниками являются германий и кремний. Ширина запрещенной зоны у германия 0,66эВ, у кремния - 1,1эВ (при T = 300К). Имея по 4 валентных эле

Итоги лекции N 13
При объединении атомов в кристалл их энергетические уровни вследствие принципа Паули превращаются в систему очень близко расположенных подуровней - разрешенныеэнергетические

Донорные примеси, полупроводникиn-типа
Для четырехвалентных полупроводников германия (Ge) и кремния (Si) донорными примесями являются атомы пятивалентных элементов, таких как фосфор (P), мышьяк (As), с

Акцепторные примеси. Полупроводникиp-типа
Акцепторными примесями для германия и кремния являются атомы трехвалентных элементов, таких как бор (B), алюминий (Al), галлий (Ga), индий (In). Название "акце

Электронно-дырочный переход. Полупроводниковый диод
Создадим контакт из двух полупроводников, один из которых p-типа, а другой n-типа, как это изображено на рис.14.3 Такой контакт называют электронно-дырочным переходом, или p-n переходом.

Полупроводниковый триод - транзистор
Полупроводниковый триод, или транзистор, - это электронный прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов. Состоит он из двух p-n переходов, созданных в

Итоги лекции N 14
Атомы пятивалентных элементов, таких как фосфор (Р), мышьяк (As), сурьма (Sb), добавленные в кристаллическую решетку четырехвалентных полупроводников германия (Ge) или кремния (Si), называютс

Оптический резонатор
Для превращения сверхлюминисценции в генерацию лазерного излучения необходимо наличие положительной обратной связи, осуществляемой за счет оптического резонатора.

Способы создания инверсии населенности
Процесс создания инверсии населенности называется накачкой. В зависимости от структуры активной среды используются различные виды накачки. В твердых телах и жидкостях испо

Виды лазеров и их применение
По режиму работы лазеры можно разделить на импульсные и непрерывного действия. По виду активной среды лазеры делятся на газовые, жидкостные, полупроводнико

Итоги лекции N 15
Лазер, или оптический квантовый генератор - это устройство, генерирующее когерентные электромагнитные волны за счет вынужденного испускания света активной средо

Размер, состав и заряд атомного ядра. Массовое и зарядовое число
Атомное ядро было открыто английским физиком Э. Резерфордом в 1911 году в опытах по рассеянию α-частиц при прохождении их через вещество. Схема этого опыта была приведена нами в первой лекции

Дефект массы и энергия связи атомного ядра. Ядерные силы
Как показывает опыт, масса ядра mя меньше, чем суммарная масса входящих в состав ядра нуклонов. Объяснение этому факту дает релятивистская механика на основе форм

Итоги лекции N 16
Ядро - центральная массивная часть атома, где сосредоточено более 99,95% массы атома. Ядро имеет положительный заряд qЯ, кратный элементарному заря

Некоторые сведения из истории открытия деления ядра урана
После открытия нейтрона физики получили в свое распоряжение частицу, способную, ввиду отсутствия заряда, проникать в любые, в том числе и тяжелые, ядра. Исследования воздействия нейтронов на ядра,

Цепная ядерная реакция. Ядерная бомба
После открытия деления ядер урана У. Зинн и Л. Сциллард, а также Г.Н. Флеров показали, что при делении ядра урана вылетает больше одного нейтрона. Дальнейшие исследов

Ядерный реактор
Ядерный реактор - это содержащая ядерное горючее установка, в которой осуществляется управляемая ядерная реакция. В качестве делящегося вещества в реакторах используют природный (либо слег

Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
Как уже отмечалось в § 2 настоящей лекции, при реакции ядерного синтеза (слияния) легких атомных ядер выделяется очень большое количество энергии. Но для того, чтобы произошло слияние атом

Закон радиоактивного распада
Закон радиоактивного распада дает зависимость N(t) -числа радиоактивных ядер от времени. Поскольку отдельные радиоактивные ядра распадаются независимо друг от друга, можно считать, что число ядер d

Взаимодействие радиоактивного излучения с веществом
Человек с помощью своих органов чувств не способен обнаружить радиоактивное излучение. Поэтому важной задачей является изучение особенностей взаимодействия различных радиоактивных излучений с вещес

Методы регистрации ионизирующих излучений
Быстрые заряженные частицы, проходя через вещество, оставляют за собой след ионизированных и возбужденных атомов. Нейтроны и γ-кванты, взаимодействуя с ядрами и атомами, создают вторичные быст

Итоги лекции N 18
1. Радиоактивностью называют свойства атомных ядер самопроизвольно изменять свой состав (заряд z и массовое число А) путем испускания элемента

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги