Генетика, как биологическая наука. Связь генетики с другими науками.

Биология – это наука о живых организмах. По мере своего развития биология накопила очень много информации. Всю эту массу научной информации не в состоянии осмыслить и проанализировать один исследователь. Поэтому возникла необходимость в дифференциации этой науки. Так из биологии выделились ботаника (наука о растительных организмах), зоология (наука о животных организмах), микробиология и другие науки. В том числе из биологии выделилась и генетика.

Генетика – наука о наследственности и изменчивости живых организмов. Свое название получила от греческого слова genesis (происхождение). Датой рождения генетики считается 1900 год, когда независимо друг от друга три ученых Г. Де-Фриз, К. Корренс и Э. Чермак повторно открыли законы, установленные Г. Менделем в 1865 году. В настоящее время генетика занимает центральное место в биологии.

Наследственность – свойство живых организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обуславливать специфический характер индивидуального развития организмов. Каждый вид животных и растений сохраняет в ряду поколений характерные для него черты: курица выводит цыплят, овца рождает ягнят, рожь воспроизводит рожь и т.д., причем каждый вид животных и растений, куда бы его не перевозили и в какие бы условия его не помещали, если он сохранит способность размножаться, воспроизведет свои особенности. Некоторые виды могут оставаться в течение миллионов лет относительно неизменными. Например, современный опоссум мало чем отличается от опоссума раннего мелового периода.

Наряду с явлением наследственности в предмет исследования генетики входит изучение изменчивости. Изменчивость – это различие между особями одного и того же вида, между предками и потомками по ряду признаков и свойств. Если мы внимательно проанализируем стадо коров черно-пестрой породы, то при общем сходстве животных этой породы мы обнаружим различия между ними по массе, форме и расположению пятен, форме рогов, развитию вымени, темпераменту и другим признакам. Среди животных нет двух организмов, полностью похожих друг на друга, за исключением однояйцовых близнецов.

Как и любая наука, генетика не может развиваться самостоятельно, вне связи с другими науками. Она постоянно заимствует знания и достижения других наук. В первую очередь необходимо отметить тесную связь генетики с эволюционным учением Ч. Дарвина, неотъемлемой частью которого она является. Основными критериями эволюции являются: измен-

чивость, наследственность и естественный отбор. Генетика также изучает эти явления и помогает понять и объяснить с научной точки зрения многие вопросы эволюции.

Значительное влияние на развитие генетики оказала цитология – наука о строении клетки. Без глубоких знаний цитологии невозможно понять материальную преемственность между поколениями. Как установлено, в клетке за наследственную информацию отвечают хромосомы. Именно эти органоиды клетки в большей степени интересуют генетиков.

Генетика также связана с биохимией, так как без знания химической природы гена невозможно представить процессы передачи наследственной информации и целенаправленного вмешательства в эти процессы. Общий раздел генетики и биохимии – это раздел нуклеиновые кислоты.

Использование в качестве объекта исследований вирусов и бактерий обусловило тесную связь генетику с микробиологией и вирусологией. В частности развитие генетической инженерии это и есть удачное соединение знаний и достижений этих наук.

Генетика в своих исследованиях широко использует математические методы, в первую очередь теорию вероятности и вариационную статистику. Впервые статистический метод удачно применил для выяснения закономерностей наследования признаков Г. Мендель. Особенно широко математические методы исследований применяют в настоящее время для изучения наследования хозяйственно – полезных признаков у животных, что привело к возникновению биометрии.

Теоретические знания, накопленные в процессе развития генетики, находят практическое применение. Эти знания используют селекционеры при создании новых сортов растений и пород животных. Таким образом, генетика связана с селекцией, разведением животных и племенным делом.

Методы генетики.Для познания закономерностей наследования признаков и их изменчивости генетика использует ряд методов. Основным методом является гибридологический. При этом методе для выявления закономерностей наследования того или иного признака проводится скрещивание особей, различающихся по этому признаку, и изучается полученное потомство в первом и последующих поколениях. Гибридологический метод впервые в своих исследованиях удачно применил Г. Мендель.

Генеалогический метод является одним из вариантов гибридологического. Наследование признака при этом изучают путем анализа передачи его потомству в целых семьях или родственных группах животных, для чего составляют родословные на несколько поколений предков, отдельных особей и целых семей. Генеалогический метод имеет большое значение при изучении наследственности человека и медленно плодящихся животных, к которым обычный гибридологический метод или не применим, или требует продолжительного времени для получения результатов опыта.

Цитологический метод применяют при изучении наследственности на уровне клетки и хромосом. Установлено, что многие дефекты и нарушения

 

в организме связаны с изменениями в числе и структуре хромосом. Поэтому при диагностике некоторых наследственных заболеваний человека и животных широко используется цитологический метод.

Биохимический метод используется в генетике для более глубокого анализа нарушений в обмене веществ и их строении. Этот метод используется при манипуляциях на уровне ДНК в генной инженерии.

Популяционно-статический метод применяется при обработке результатов скрещиваний, изучении изменчивости признаков и связи между ними. При использовании этого метода анализу подвергаются большие по численности массивы растительных или животных организмов. Этот метод является основным в биометрии.

Феногенетический метод применяется для установления степени влияния генов и факторов внешней среды на развитие признаков организма. При использовании этого метода изучаются особи с разной наследственностью или находящиеся в разных условиях среды.

Кроме названных методов, в генетике используются и другие методы: иммунологический, близнецовый, онтогенетический.

История развития генетики. Русские ученые-генетики.Мыслители и ученые задумывались над вопросами передачи наследственных признаков от родителей к детям со времен глубокой древности. Но в те далекие времена представления о наследственности и изменчивости были очень неточными и во многих случаях ошибочными. Вот как объяснял наследование признаков у человека древнегреческий ученый Эмпедокл: «Образование зародыша подчиняется во время беременности воображению женщин: часто они воспламеняются любовью к статуям или картинам и имеют детей, похожих на эти предметы».

Многочисленные исследования по гибридизации растений, проводившиеся в 18 и 19–х веках, постепенно вскрыли отдельные закономерности в наследовании признаков. Известный шведский ученый Карл Линней, создатель системы растительного и животного мира, занимался гибридизацией растений. Линней выдвинул теорию о наследовании материнских и отцовских признаков, пологая, что у растений и животных внутренние части и органы наследуются от матери, наружные – от отца.

В 1760-70 годах ботаник Кельрейтер в результате опытов по гибридизации табака установил, что гибриды имели признаки, промежуточные между признаками обоих родителей. Это свидетельствовало о передаче родительских признаков как через пыльцу, так и через семяпочки. Кельрейтер первым установил явление, связанное с более мощным развитием гибридов первого поколения (явление гетерозиса). Однако Кельрейтеру и ученым, работающим по гибридизации растений после него, не удалось раскрыть природу механизма наследственности. Это объясняется тем, что в то время еще не были известны цитологические основы наследственности.

Большой вклад в развитие генетики внесли Томас Найт, Огюстен Сарже, Шарль Ноден и другие.

 

Интересовали проблемы наследования признаков и Ч. Дарвина. Он сформировал свои взгляды на эту проблему в «гипотезе пангенезиса». Согласно этой гипотезе от каждой части тела отделяются особые частицы-геммулы. Эти частицы кровью переносятся к половым клеткам. В дальнейшем при развитии нового организма из каждой частицы формируется тот орган, к которому она принадлежала в родительском организме. В этой гипотезе правильным является факт передачи признаков через половые клетки, но в то же время ошибочно предположение о связи частей тела с половыми клетками посредством особых частиц – «геммул».

Известный немецкий ботаник Карл Негели предложил умозрительную гипотезу идиоплазмы. Основными положениями ее являются существование особой субстанции в клетке – идиоплазмы, которая играет роль носительницы наследственности, признание полной равноценности всех клеток организма в явлениях наследственности и допущение возможности наследования приобретенных свойств.

Значение умозрительных гипотез наследственности состояло прежде всего в том, что они поставили ряд вопросов, которые позже стали предметом экспериментальных исследований. Эти гипотезы внесли в науку несколько новых представлений, прежде всего, допущение существования особых носителей наследственных свойств – генов, которые кодируют информацию о признаках организма.

Впервые закономерности наследования признаков в полном объеме были открыты в 1865 году Г. Менделем, который на основании опытов по скрещиванию различных сортов гороха установил единообразие гибридов первого поколения, расщепление признаков в соотношении 3 : 1 во втором поколении и независимость наследования различных признаков. Эти открытия дали толчок к дальнейшим работам по проверке описанных закономерностей на других видах растительных и животных организмов. В результате была подтверждена их универсальность, и они приобрели статус законов.

В 1910 году Томас Морган с учениками, использовав качестве объекта исследований муху дрозофилу и опираясь на накопленные к тому времени данные цитологии, создали подтвержденную в дальнейшем цитологически хромосомную теорию наследственности. Согласно этой теории, гены локализуются в хромосомах в строго определенной для каждого из них линейной последовательности и на определенном расстоянии друг от друга.

С начала 40 годов начались интенсивные исследования явлений наследственности и изменчивости на молекулярном уровне. В 1944 году американский ученый О. Эвери с сотрудниками показал, что ведущая роль в сохранении и передаче наследственной информации принадлежит ДНК. Это открытие послужило началом развития молекулярной генетики.

Дж. Уотсон и Ф. Крик в 1953 году расшифровали структуру молекулы ДНК. После этого стало ясно, каким способом кодируется наследственная информация о составе и структуре организмов. В дальнейшем, благодаря

научным работам Ниренберга и Очоа, был расшифрован генетический код. В 1969 году в США Корана с сотрудниками вне организма химическим путем синтезировал участок молекулы ДНК или простейший ген. Эта и другие работы легли в основу генной инженерии, которая бурно развивается в настоящее время.

Большой вклад в развитие мировой науки внесла наша отечественная генетика. Ученые нашей страны открыли ряд важнейших закономерностей наследственности и изменчивости.

Ю. А. Филипченко является создателем первой в России кафедры генетики в Петербургском университете. Им написано более десятка книг и брошюр по вопросам генетики.

Н. И. Вавилов провел большую по объему экспериментальную работу. Он организовал и осуществил более 10 экспедиций в малодоступные районы зарубежных стран по изучению центров происхождения культурных растений. Им написано 8 книг, создан Всесоюзный институт растений (ВИР) с широчайшей сетью отделений и опытных станций. Н. И. Вавилов был организатором и первым руководителем ВАСХНИЛ и института генетики АН СССР. Начав с экспериментальной работы в области генетики пшеницы и иммунитета растений. Н. И. Вавилов вскоре перешел к широкому изучению и обобщению собранных материалов по всем культурным растениям, что позволило ему открыть закон гомологичных рядов наследственной изменчивости. Н. И. Вавилов был талантливым организатором. В созданный им институт он приглашал крупнейших генетиков из зарубежных стран. Так, в этом институте работали ученые из США – К. Бриджес и Г. Меллер, болгарский ученый Д. Костов и другие.

Н. К. Кольцов – основоположник экспериментальной биологии. Он был блестящим организатором науки, сплотившим вокруг себя большое количество учеников, многие из которых впоследствии стали крупными учеными (А. С. Серебровский, С. С. Четвериков, Б. Л. Астауров и другие).

Г. А. Надсон совместно с Г. С. Филипповым в 1925 году провели исследования по изучению действия рентгеновских лучей на дрожжевые грибки. В их работе доказана возможность экспериментального получения мутантов под действием ионизирующих излучений. Эти работы оказали влияние на развитие и возникновение нового направления в генетике – радиационной генетики.

Г. Д. Карпаченко известен по работам в области отдаленной гибридизации. Используя явление полиплоидии, ему впервые удалось получить межвидовые гибриды растений, которые обычным путем не скрещиваются. Эти теоретические разработки сегодня с успехом используют селекционеры в своей работе.

Большой вклад в развитие отечественной генетике внесли также М. Е. Лобашев, Н. П. Дубинин, Н. В. Цицин, В. В. Сахаров и другие.

Значение генетики для практики.Генетика сегодня занимает ведущее место в современной биологии. Фундаментальные открытия этой науки реализуются в селекции растений и разведении животных. За последние

годы созданы гибриды ячменя и пшеницы, ячменя и ржи, выведены новые сорта пшеницы, способные давать около 100 центнеров зерна с гектара, высокомасличные сорта подсолнечника с содержанием жира в семенах до 55%. Выведены фитофтороустойчивые и ракоустойчивые сорта картофеля, полиплоидные сорта сахарной свеклы и плодовых деревьев. В животноводстве широко используется явление гетерозиса (более мощное развитие гибридов первого поколения по сравнению со своими родителями). Практически на всех птицефабриках нашей страны производят мясо птицы за счет бройлеров, а для получения яиц используют гибридную птицу. Применяется это явление также в свиноводстве и мясном скотоводстве.

С помощью иммуногенетических методов сегодня проводится уточнение происхождения животных при их продаже.

Разработанные методы пересадки оплодотворенных яйцеклеток и эмбрионов нашли применение при размножении высокопродуктивных животных.

Методы генетической инженерии широко применяются в биотехнологии (отрасли по производству нужных человеку веществ с помощью живых организмов). Методами генетической инженерии созданы промышленные штаммы микроорганизмов, продуцирующие инсулин (гормон щитовидной железы), интерферон, соматотропин и другие биологически активные вещества. В медицине и ветеринарии нашли применение моноклональные антитела, полученные методами гибридомной технологии.

Генетические методы находят применение в медицине для ранней диагностики некоторых наследственных заболеваний, защиты организма человека от негативного действия различных факторов и веществ.

 

Лекция 2