рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Диалекты алгебры

Диалекты алгебры - раздел История, История математики. От счетных палочек до бессчетных вселенных   В Главе 11 Мы Видели, Как Алгебра Освобождалась От Кандалов Г...

 

В главе 11 мы видели, как алгебра освобождалась от кандалов геометрической размерности и как, начиная с Декарта, символы алгебры – те самые х и у – могли обозначать любое число и сочетаться любым способом, предусмотренным правилами арифметики. В этой главе мы познакомимся с развитием алгебры в англоязычных странах, а затем понаблюдаем за развитием этой дисциплине в других государствах Европы. Быстрое увеличение количества диалектов алгебры привело к фундаментальной переоценке понимания самой математики.

ОСНОВНЫЕ АЛГЕБРАИЧЕСКИЕ ПРАВИЛА АРИФМЕТИКИ ДЛЯ ЛЮБЫХ ЧИСЕЛ X, Y И Z

х + у=у + х сложение коммутативно – сумма двух чисел не зависит от порядка расположения слагаемых

X х у=у х х умножение коммутативно

х + 0 = х сложение имеет нейтральный элемент, ноль, который оставляет любое число неизменным

х х 1 = х умножение имеет нейтральный элемент, единицу, которая оставляет любое число неизменным

X х(у + z) = х х у+х х z умножение ассоциативно по отношению к сложению.

Британский математический анализ отставал от европейского. Здесь во многом виновата ньютоновская нотация флюксий и ее неполноценность по сравнению с символикой, предложенной Лейбницем, – dy/dx. После того как британцы, пусть поначалу и неохотно, приняли европейскую систему обозначений, они добились нескольких довольно заметных достижений. В 1817 году, когда английский математик Джордж Пикок (1791–1858) был назначен экзаменатором по математике в Кембриджском университете, символическая нотация Лейбница наконец заменила флюксии Ньютона. По словам Чарльза Бэббиджа (1791–1871), целью Аналитического общества, основанного в 1813 году, была разработка «принципов чистого „де‑изма“ в противовес „староточкизму“ университета»[21]. Другая цель общества заключалась в том, чтобы «сделать мир более мудрым, чем он был, когда мы в него пришли». Пикок в своем «Трактате об алгебре» (1830) назвал эту дисциплину «иллюстративной наукой». Первым делом арифметическая алгебра была отделена от символической. Элементами арифметической алгебры были числа и арифметические операции, тогда как символическая алгебра – это «наука, расценивающая комбинации знаков и символов согласно определенным законам, которые в целом независимы от определенных значений этих символов». Это откровенно неопределенное утверждение открыло дверь к общим исследованиям в области алгебры.

Никому не известный преподаватель начальной школы из Линкольна Джордж Буль (1815–1864) написал, как теперь считают, первую работу по математической логике. Буль подружился с шотландским математиком Огастесом де Морганом (1806–1871), которого поддерживал в споре о логике с шотландским философом сэром Уильямом Гамильтоном (1788–1856). Последний, кстати, не был родственником ирландского математика сэра Уильяма Роуэна Гамильтона. Об этом споре теперь все забыли, но именно он вдохновил Буля, математика‑самоучку и лингвиста, издать в 1847 году краткую работу, озаглавленную «Математический анализ логики». В том же году вышла публикация де Моргана «Формальная логика». Два года спустя, скорее всего при поддержке де Моргана, Буль был назначен профессором математики в недавно открывшемся Королевском Колледже в Корке. Буль был твердо уверен, что логика должна считаться частью математики, а не метафизики и что правила логики должны выводиться не путем рассуждений, а посредством построения из простых формальных элементов. Только после создания логической структуры можно давать лингвистическую интерпретацию. Он отвергал представление, согласно которому математика считалась наукой о числах и размерах (представление, восходящее к древним грекам), и считал, что любая последовательная символическая логическая система – часть математики. Впервые мы видим ясно сформулированное представление, согласно которому математика – это наука, где главное не столько содержание, сколько структура. В работе Буля «Исследование законов мышления, на которых основываются математические теории логики и вероятностей» (1854) эти идеи подробно разъяснялись, устанавливалась формальная логика и новая алгебра, которую теперь называют алгебраической логикой. Булева алгебра – по существу, алгебра классов объектов, и переменные вроде х теперь обозначали не числа, а скорее ментальный акт выбора класса из заданного пространства. Например, х может быть классом «мужчины» из пространства «люди». Символы подчиняются тем же правилам, что и в арифметической алгебре, за исключением дополнительной аксиомы, что x2 = х. В арифметике это уравнение верно только в случае, когда х равен 1 или 0, но в булевой алгебре это верно всегда – выбор класса «мужчин» дважды даст то же самое, что и однократный выбор. Кроме того, Буль придал символам 1 и 0 конкретные значения: 1 – это «всё», а 0 – «ничто». Эти идеи лежат в основе всемирной компьютерной революции, и мы снова вернемся к ним и подробно их рассмотрим в Главе 23.

Огастес де Морган был верным сторонником новой алгебры. Он родился в Индии, посещал Колледж Троицы в Кембридже, но не стал «оксфордианцем» или «кембриджианцем», потому как, хотя и принадлежал к англиканской церкви, де Морган отказался пройти теологический экзамен, необходимый для получения диплома. Вместо этого в возрасте двадцати двух лет он был назначен профессором недавно основанного светского Лондонского университета, позднее получившего название Университетского колледжа в Лондоне. Он значительно развил идеи Пикока, уже в 1830 году заявив, что «за одним‑единственным исключением, в этой главе ни одно из понятий или знаков арифметики или алгебры не имеет ни малейшего значения. Предмет обсуждения этой главы – символы и законы их сочетания, позволяющие создать символическую алгебру, которая после этого может стать грамматикой для ста различных алгебр». Единственным исключением, по де Моргану, был символ равенства, по этой причине в выражении х=у х и у должны иметь одно и то же значение. Это странно звучащее высказывание взято из книги «Тригонометрия и двойная алгебра» (1830): «двойная алгебра» относится к сдвоенной природе комплексных чисел в противоположность «одиночной алгебре» действительных чисел. Но де Морган, казалось, не сумел до конца понять важность собственного заявления: увидев подобие между одинарной и двойной алгебрами, он полагал, что тройной или четверной алгебры быть не может. В этом он сильно ошибался.

Несмотря на то что оба родителя Уильяма Роуэна Гамильтона умерли, когда он был еще ребенком, его дарование стало заметным очень рано. Талантливый лингвист, он уже в пятилетием возрасте читал тексты на греческом, иврите и латыни. Он проступил в Дублинский Тринити Колледж и в двадцать два года, еще не получив диплома о завершении образования, был назначен Королевским астрономом Ирландии, директором обсерватории Дансинка и преподавателем астрономии. Одной из его любимых тем было рассуждение о том, что пространство и время неразрывно связаны, причем геометрия – это наука о пространстве, а алгебра – наука о времени. В 1833 году он представил в ирландскую Королевскую академию характерное представление сложных чисел а + ib как упорядоченной пары (а, b) со ставшими теперь стандартными геометрическими интерпретациями сложения и умножения:

(а, b) + (с, d) = (а + с, b + d)

(а, b) х (с, d) = (ас ‑ bd, ad + bc)

Затем он попытался распространить систему двумерных сложных чисел до трех измерений. Поначалу это казалось довольно просто – он просто определил z = а + ib + jc с длиной, равной √ (а2 + b2 + с2). Определение сложения тоже было довольно простым, но умножение просто не будет работать: невозможно менять сомножители местами без изменения результата. Эта проблема и числа более высокого порядка не давали ему покоя больше десяти лет. Затем, 16 октября 1843 года, он шел с женой вдоль Королевского канала, и вдруг на него снизошло озарение: нужно использовать четверки, а не тройки и отбросить закон коммутативности. В результате четверки выглядели так: z=a + ib +jc + kd c i2 =j2 = k 2 = ijk = ‑1. Это означало, что ij = k, но ji = ‑k, так что переместительный закон был отброшен. Но в целом структура была последовательной. Так возникла новая алгебра. Гамильтон остановился и вырезал формулу ножом на камне Бротонского моста. В тот день он оповестил ирландскую Королевскую академию, что на следующей встрече он желает прочитать лекцию о кватернионах – так он назвал свои четверки.

Важность этого открытия – не только в создании новой алгебры, но и в том, что математики получали свободу построения новых видов алгебры. Это первая подробная теория о некоммутативной алгебре. Свойство некоммутативности означает, что при трех измерениях общая последовательность двух вращений даст различные результаты в зависимости от того, в каком порядке они будут выполняться, в отличие от того, что происходит при двух измерениях. Оставшуюся часть жизни Гамильтон развивал новую алгебру и в 1853 году опубликовал «Лекции о кватернионах». Большая часть этой работы посвящена применению кватернионов в геометрии, дифференциальной геометрии и физике. Как мы увидим в следующей главе, Джеймс Клерк Максвелл сформулировал свои уравнения электромагнетизма в нотации кватернионов. Гамильтон был до одержимости твердо уверен, что кватернионы – ключ к полному описанию законов Вселенной. Он умер в 1865 году, почти завершив свой труд «Основы теории кватернионов», который был отредактирован и издан его сыном уже после смерти ученого.

Не только алгебра вырвалась из цепей геометрии, но и геометрия вышла за рамки пространственных концепций (см. Главу 16). И алгебру, и геометрию все больше рассматривали как абстрактные конструкции, простыми частными случаями которых были знакомая нам арифметическая алгебра и двух‑ и трехмерная геометрия.

 

Теорема 1

Все операции с языком как инструментом рассуждения могут быть выполнены с помощью системы знаков, состоящих из следующих элементов:

1. буквенные символы, такие, как х, у и т. д., которые отображают объекты наших концепций.

2. Знаки операций, такие, как +, ‑, х, описывают операции, являющиеся предметом наших размышлений, при помощи которых концепции и объекты комбинируются или решаются, чтобы сформировать новые концепции, вовлекающие те же самые элементы.

3. Знак равенства, =.

И эти символы логики используются, подчиняясь определенным законам, отчасти согласующимся с законами, соответствующими тем, что приняты в алгебре, а частично отличающимся от них.

Джордж Буль.

Исследование законов мышления, на которых основываются математические теории логики и вероятностей (1854)

 

Молодая американская математика проявила себя именно в области создания новых алгебр. Бенджамин Пирс (1809–1890), профессор математики в Гарварде и директор Геодезической службы, был очень впечатлен работой Гамильтона и начал широко распространять его идеи в США. Пирс начал составлять таблицы для 162 различных алгебр. Каждая алгебра начиналась с нескольких – от двух до шести – элементов, которые могли быть скомбинированы при помощи двух операций – ассоциативного умножения и сложения. В сложении всегда был нейтральный элемент ноль, однако умножение порой не имело нейтрального элемента 1. Каждая из этих «линейных ассоциативных алгебр» разворачивалась в матрицу. Из‑за того что профессор Гарварда в 1870‑е годы был вынужден издавать свою работу литографическим способом, некоторые заключили, что в США экономические трудности. Работа была записана переписчицей от руки и напечатана в количестве всего 100 экземпляров. Сын Бенджамина, Чарльз Сандерс Пирс (1839–1914), продолжил работу отца и показал, что из всех 162 алгебр только в трех была уникально определенная операция деления – в арифметической алгебре, алгебре комплексных чисел и алгебре кватернионов. В Англии Уильям Кингдон Клиффорд (1845–1879) создал свои алгебры (в том числе алгебру октонианов и бикватернионов). Он сделал это прежде всего для того, чтобы изучить движение в неевклидовом пространстве. Все эти новшества увели ученых далеко от той алгебры, которую знали в начале столетия.

Здесь история разветвляется на множество переплетающихся путей. Последователи Буля применили математику к логике, создав алгебраическую логику; итальянский математик Джузеппе Пеано (1858–1932), а позднее английский математик и философ Бертран Рассел (1872–1970) стремились вывести математику из логики – эту затею можно определить как логицизм. Другие ученые, тревожась из‑за появления новых математических структур, начали искать твердый фундамент математики – то, на чем сможет надежно стоять все здание этой науки. О практических результатах этого поиска можно узнать из главы 23.

 

Если человек не знает, как рассуждать логично, – а я должен отметить, что большинство довольно хороших, да и выдающихся математиков подпадают под эту категорию, – но просто пользуется счетом на пальцах, слепо делая выводы по аналогии с другими выводами, которые оказались правильными, он, конечно, будет постоянно делать ошибки в отношении нон‑финитных чисел. Истина заключается в том, что такие люди вообще не рассуждают. Однако для того меньшинства, что способно рассуждать, рассуждение о нон‑финитных числах оказывается проще, чем рассуждение о числах финитных, поскольку [в первом случае] не требуется сложный силлогизм транспонируемого количества. Например, то, что целое больше своих частей, не является аксиомой, в отличие от мнения Евклида, в высшей степени плохого логика. Это теорема, легко доказуемая с помощью силлогизма транспонируемого количества, но не иначе. Она верна в отношении конечных множеств, но ошибочна в отношении бесконечных. Так, четные числа являются частью целых чисел. Тем не менее четных чисел не меньше, чем всех целых чисел; это несложная теорема, поскольку если любое число в целом ряде целых чисел удвоится, результатом будет ряд четных чисел:

1,2, 3, 4, 5, 6 и т. д.

2, 4, 6, 8,10,12 и т. д.

Так что для каждого числа существует отдельное четное число. На самом деле существует столько же отдельных удвоенных чисел, сколько существует вообще отдельных чисел. Но все удвоенные числа являются четными…

Чарльз Сандерс Пирс[22].

Закон разума (1892)[23]

 

 

– Конец работы –

Эта тема принадлежит разделу:

История математики. От счетных палочек до бессчетных вселенных

История математики От счетных палочек до бессчетных вселенных...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Диалекты алгебры

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Вступление
  Я наконец понял: большую часть жизни я боролся за то, чтобы сломать привычное представление, застрявшее в групповом менталитете моих сограждан. Сущность этог

Начало начал
  В любой книге должна быть первая глава со вступительным словом. История – не слишком однозначный и четкий предмет, так что поиск первого использования чисел – это путешествие в тума

Блюстители неба
  В самом начале математика развивалась, обслуживая нужды торговли и сельского хозяйства, но, помимо того, она также была связана с выполнением религиозных обрядов и наблюдением за дв

Теорема Пифагора
  Каждый из нас сталкивался в школе с этой теоремой. Сейчас ее называют «теоремой Пифагора», но она была широко известна в древности задолго до рождения знаменитого грека. Существован

Десять книг счетного канона
  Поначалу китайская цивилизация развивалась по берегам рек Янцзы (Длинная) и Хуанхэ (Желтая) во времена легендарной династии Ся во втором тысячелетии до нашей эры. Династия Чан прави

Математические сутры
  Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого – началом третьего тысячел

Дом Мудрости
  В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк

Семь свободных наук и искусств
  В 529 году Юстиниан, римский император и христианин, закрыл языческие философские школы, включая Академию в Афинах. Так подошла к концу тысячелетняя история греческой математики. Мн

Перспектива в эпоху Возрождения
  Очень много писалось об итальянском Ренессансе как о периоде, определившем направление европейского сознания. Пробуждение интереса к классическим наукам соединилось с желанием выйти

Математика для общего блага
  Шестнадцатый век в Европе отмечен обещанием бесконечных возможностей. В предшествующие два столетия континент сотрясался различными бедствиями, как природными, так и созданными рука

Бракосочетание алгебры и геометрии
  Начиная со времен древней Греции математика была раздроблена на две основных ветви – геометрию и арифметику. Первая оперировала размерами, вторая – числами. Но между ними никогда не

Вселенная как часовой механизм
  В шестнадцатом веке основным источником информации об орбитах планет оставался «Альмагест» Птолемея (см. Главу 2). Громоздкая структура Птолемеевой системы эпициклов и деферентов пр

Математика в движении
  Мы уже упоминали, что Ньютон и Кеплер моделировали орбиты планет исключительно геометрически. Однако в космическом пространстве не существует реальных эллипсов, они – лишь невидимые

Океаны и звезды
  Все ранние цивилизации занимались составлением карт. Цели ставились разные – строительство, сбор налогов или подготовка к войне, однако землемер – одна из самых древних профессий, д

Уравнение пятой степени
  В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с

Новые геометрии
  С тех пор как в третьем столетии до нашей эры появились «Начала», евклидова геометрия (см. Главу 4) считалась самой совершенной из всех математических систем. Основанная на самых об

Поля деятельности
  С середины восемнадцатого века события в дифференциальном и интегральном исчислениях шли рука об руку с развитием математического анализа физических явлений, особенно движения. Иссл

Заманчивая бесконечность
  Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности – бесконечно малых величин. Их страх время от времени всплывал на

Об игральных костях и генах
  Исследование вероятности в том виде, каким мы видим это сегодня, началось лишь в семнадцатом веке, однако изучение комбинаций и перестановки объектов или событий имеет более длинную

Военные игры
  Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр – сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирую

Математика и современное искусство
  В двадцатом веке произошли множество научных открытий и взрыв технологического развития физики, биологии и гуманитарных наук. В эпоху Просвещения считалось, что накопленные знания о

Машинные коды
  В истории математики существовало множество параллельных течений, из которых то одно, то другое периодически выходило на передний план. Такими были отношения между арифметикой и гео

Хаос и сложность
  С начала девятнадцатого века математика рассматривалась как аналитический и логический предмет; к концу столетия она произвела на свет целый зверинец математических монстров, вроде

Благодарности
  Я премного благодарен профессору Айвору Граттану‑Гиннесу за его решительную поддержку моих разнообразных проектов, а также за его долготерпение и благоразумные советы касатель

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги