рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математические сутры

Математические сутры - раздел История, История математики. От счетных палочек до бессчетных вселенных   Древнейшие Свидетельства О Наличии Математики В Азии Мы Видим...

 

Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого – началом третьего тысячелетия до нашей эры. Хотя самые ранние документы довольно трудно расшифровать, понятно, что это торговые счета, с весами и размерами, с особой ссылкой на передовую технологию производства кирпичей. Приблизительно в 1500‑х годах до нашей эры культура Хараппы была уничтожена захватчиками с севера. Их называли ариями. Они были пастухами, говорили на индоевропейском языке, предшественнике санскрита и многих современных языков. Первая письменная кодификация языка была сделана великим филологом Панини в четвертом веке до нашей эры. Он в одиночку сумел сделать санскрит понятным языком, кодировавшим мысли целого субконтинента в течение более чем двух тысяч лет. Если можно сказать, что греческая математика проистекает из философии, то корни индийской математики уходят в лингвистику.

Самая ранняя ведическая литература прежде всего носит религиозный и церемониальный характер. Наиболее ценны с точки зрения математики – приложения к главным «Ведам», известные как «Веданги». Они записаны в виде сутр – коротких поэтических афоризмов, столь типичных для санскритских текстов, которые стремятся передать содержание в наиболее сжатой и запоминающейся форме. «Веданги» разделены на шесть областей: фонетика, грамматика, этимология, поэзия, астрономия и ритуалы. Последние два предмета дают нам возможность оценить уровень развития математики того времени. Раздел «Веданг», посвященный астрономии, называют «Джьотиша‑сутра», в то время как раздел, посвященный ритуалам, носит название «Кальпа‑сутра». Одна из его частей, посвященная строительству жертвенных алтарей, называется «Шульба‑сутра».

Самый ранний текст «Шульба‑сутры» был написан приблизительно в 800–600 годах до нашей эры, еще до кодификации санскрита Панини. Геометрия выросла из потребности соответствовать размеру, форме и ориентации алтарей, определенных в священных текстах «Вед». Абсолютная точность была столь же важна для эффективности ритуала, как и правильное произнесение мантр. Геометрия выражена тремя основными способами: явно сформулированные геометрические теоремы; процедуры, необходимые для того, чтобы строить различные формы алтарей; алгоритмы, связанные с предыдущими двумя группами. Самая важная теорема – теорема Пифагора прямоугольных треугольников.

Один пример иллюстрирует, как теоретические результаты шли бок о бок с практическими задачами. Используя теорему Пифагора, всегда можно построить квадрат, площадь которого равна удвоенной площади заданного квадрата. Но если мы начинаем с двух реальных квадратов, скажем сделанных из ткани, каков самый эффективный способ разрезать их и снова сложить куски так, чтобы составить больший квадрат? Хотя этот тип построения не приводится в «Шульба‑сутре» в явном виде, существует свидетельство подобных конкретных способов рассуждения. Один из ключей – приближение, используемое для вычисления √2, которое осуществляется с точностью до пятого десятичного знака: «Увеличьте измерение на треть от него, а эту треть – на четверть от этой трети минус тридцать четвертую часть от этой четверти». Это могло отображать разделение одного из квадратов на подходящие прямоугольники и расположение их вокруг другого квадрата, чтобы построить квадрат двойной площади. Этот подход имеет аналоги в китайской геометрии, а результат очень близок к тому, который получали вавилоняне.

Учитывая выдающееся положение индо‑арабских цифр в десятеричной системе со знакоместом, стоит кратко вспомнить раннюю историю индийских цифр. Цифры «кхарошти» можно увидеть на надписях, относящихся к четвертому столетию до нашей эры. В них есть особые символы для единицы и четверки, а также для десяти и двадцати. Числа свыше сотни получаются путем сложения. Самые ранние следы цифр «брахми» относятся к третьему столетию до нашей эры, их можно увидеть на колоннах Ашоки, разбросанных по всей Индии. Это более развитая система, в нее входили специальные символы для чисел, кратных десяти и ста, а также для значений второго десятка. Датировка чисел «бакшали» (по названию города, где они были обнаружены) крайне ненадежна, но если она все же верна, то эти числа, относящиеся к третьему веку нашей эры, – первая известная система с учетом знакоместа, где было специальное обозначение для ноля. Там было всего десять символов, но ими можно было выразить любое число, сколь угодно большое. Цифры «гвалиор» (тоже по названию города) девятого века нашей эры узнаваемо похожи на наши современные, это первое бесспорное появление ноля в индийской надписи, За пределами Индии, но тем не менее в рамках ее культурного влияния мы находим кхмерскую надпись в Камбодже, датированную 683 годом, в которой используется ноль.

Классический период индийской математики начался в середине первого тысячелетия. Большей частью Индии правила династия Гуптов, которые поощряли исследования в области наук и искусств. Математическая деятельность была сконцентрирована в трех центрах: в столице Паталипутре (современная Патна), в Удджайне на севере и в Майсуре на юге. Два самых крупных математика этого периода – это Ариабхата (476–550), автор «Ариабхатии» (499), и Брахмагупта (ок. 598–660), который в 628 году сочинил трактат под названием «Брахма‑спхута‑сидцханта» («Открытие Вселенной»). Основными задачами, которыми занимались эти ученые, были математическая астрономия и анализ уравнений.

«Ариабхатия» состоит из 123 стихов. Трактат начинается с восхваления богам, а затем в нем описываются алгоритмы для вычисления квадратов, кубов, квадратных и кубических корней. В работе приведены 33 правила по арифметике, алгебре и тригонометрии на плоскости. Семнадцать правил посвящены геометрии, 11 – арифметике и алгебре. В десятом правиле приводится значение π как отношение 62,832:20,000, что эквивалентно 3,1416, – это самое точное значение, вычисленное в то время, и оно останется таковым еще тысячу лет. Трактат включает также таблицу синусов. В отличие от Птолемея, использовавшего в качестве основной меры хорды, индусы использовали полухорды и выражали их в радиусах. Поэтому, за исключением постоянного множителя, индийские синусы намного ближе к нашим современным. Разделив четверть окружности на 24 равные части и начав с нескольких базовых результатов и формул, вроде sin 30° = 1/2, Арьябхата составил таблицу синусов для углов от 3°45′ и выше. Ему также приписывают создание формулы, позволяющей приблизительно оценить синус любого угла без использования таблицы с точностью до нескольких десятичных знаков.

Позже Брахмагупта создал формулу интерполяции, используя арифметический метод разностей, чтобы найти синусы промежуточных углов. В дальнейшем тригонометрию развивали арабы на севере и математики Кералы на юге. Арабы, а затем и западный мир познакомились с индийской математикой и астрономией отчасти благодаря переводу «Брахма‑спхута‑сиддханты».

Брахмагупта основал ставшую широко известной школу в Удджайне. Его «Брахма‑спхута‑сиддханта» – самый полный трактат по астрономии того времени. В некоторых разделах этого труда производится анализ неопределенностей, взятых из календарных вычислений и астрономии. Арьябхата решал линейные неопределенные уравнения, используя алгоритм Евклида, описанный в «Началах», – сокращение коэффициентов до тех пор, пока уравнения не будет удобно решать методом проб и ошибок. Брахмагупта приводит алгоритм для решения в целых числах уравнений вида ах2± с = у2, которые геометрически представляют собой гиперболы. В Европе эта формула получила известность под названием «уравнение Пелля»[6].

Позднее знаменитый индийский математик Бхаскара (Бхаскарачарья) (1114 – ок. 1185) улучшил эти методы, создав «циклический» метод, известный как «чакравала» (метод нахождения наименьшего нетривиального решения). Он привел решение известной задачи – уравнения 61х2 + 1 2. Это та самая задача, над которой Пьер Ферма бился в семнадцатом столетии и решение которой было найдено Жозефом Луи Лагранжем лишь сто лет спустя. Но даже и в восемнадцатом веке алгоритм «чакравала» был намного более эффективен. Наименьшие решения: х = 226 153 980, у = 1 766 319 049.

Ни в «Ариабхатии», ни в «Брахма‑спхута‑сиддханте» не доказываются представленные там результаты. Но это не означает, что их авторы не знали доказательств или не понимали, насколько важно продемонстрировать обоснованность приведенных правил. То, что индийские математики осознавали необходимость доказательств, видно хотя бы из того, что Бхаскара отклонил джайнистское приближенное значение π, представленное как √10: хотя и численно близкое, оно не сопровождалось никакими внятными объяснениями. В любом случае индийские математики не ограничивались только лишь представлением методов расчета и результатов, эти результаты проверялись и перепроверялись много раз, что, в свою очередь, способствовало возникновению еще более строгих методик.

Бхаскара из Удджайны был выдающимся математиком. Ему приписывается открытие некоторых понятий из области вычислений, которые стали широко известны намного позже. Трактаты Бхаскары издавались даже в девятнадцатом столетии. Одним из аспектов индийской астрономии было исследование мгновенных движений планет, особенно Луны. Были сделаны удивительно верные расчеты времени затмений, поэтому будущие затмения могли быть предсказаны с невероятной точностью. И Ариабхата, и Брахмагупта использовали для этого одну и ту же формулу, а Бхаскара усовершенствовал метод расчета, выведя то, что можно считать дифференциалом синуса. В его трактате «Сиддханта‑широмани» («Венец учения») используется «бесконечно малая» единица измерения – «трути», равная 1/33,750 секунды. По сути, в определенном смысле трактат Бхаскары можно рассматривать как предварение математического анализа, но, похоже, этот «пред‑анализ» не рассматривался как самостоятельная тема и не распространялся на другие ветви математики.

Впоследствии Ньютон в своем математическом анализе будет активно использовать бесконечные ряды. Особенно полезным достижением индийской математики была аппроксимация синусов и косинусов полиномами с бесконечным числом членов – работы именно в этом направлении мы можем увидеть у математиков Кералы. После Бхаскары успехи индийской математики были невелики – страну охватил политический хаос. Но юго‑западная Индия оставалась в значительной степени защищенной от этих потрясений, так что там математика могла развиваться вплоть до четырнадцатого – семнадцатого веков. Керала была центром морской торговли, туда стекались люди из самых разных стран. Конечно, необходимо более точно изучить историческую роль Кералы в продвижении математических идей, но некоторые результаты указывают на то, что математика там процветала.

Мадхава из Сангамаграма (ок. 1340–1425), известный более поздним астрономам как Голавид, или «Повелитель сфер», был одним из величайших средневековых математиков. Его работы по исследованию бесконечных рядов были утеряны, но постоянно цитировались более поздними авторами вплоть до шестнадцатого века. Многие результаты, которые были названы в честь европейских математиков, возможно, должны были носить имя Мадхавы. Сюда входят разложение синусов и косинусов в бесконечный многочлен, считающееся заслугой Ньютона, а также формулы малоуглового приближения, представляющие собой часть рядов Тейлора. Эти формулы позволяли составлять тригонометрические таблицы с любой желательной точностью; таблицы Мадхавы были составлены с точностью до восьми десятичных знаков. Мы также находим у него бесконечный ряд, выражающий значение числа π. Один пример, приведенный в стихотворной форме, иллюстрирует, как определенные объекты традиционно использовались для того, чтобы обозначить числа и способствовать их последующему вспоминанию:

 

Боги [33], глаза [2], слоны [8], змеи [8], огни [3], тройка [3], качества [3], веды [4], наксатры [27], слоны [8] и руки [2] – мудрые говорят, что это длина окружности, когда диаметр круга – 900 000 000 000.

 

Прочтение чисел справа налево и деление получившегося числа на указанный диаметр приводят к значению π с точностью до одиннадцати десятичных знаков. Такое вычисление с использованием бесконечного ряда сразу напоминает о гениальном индийском математике‑самоучке из Кералы – Сринивазе Рамануджане (1887–1920), невероятные способности которого позволили ему поступить в Кембриджский университет.

 

– Конец работы –

Эта тема принадлежит разделу:

История математики. От счетных палочек до бессчетных вселенных

История математики От счетных палочек до бессчетных вселенных...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математические сутры

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Вступление
  Я наконец понял: большую часть жизни я боролся за то, чтобы сломать привычное представление, застрявшее в групповом менталитете моих сограждан. Сущность этог

Начало начал
  В любой книге должна быть первая глава со вступительным словом. История – не слишком однозначный и четкий предмет, так что поиск первого использования чисел – это путешествие в тума

Блюстители неба
  В самом начале математика развивалась, обслуживая нужды торговли и сельского хозяйства, но, помимо того, она также была связана с выполнением религиозных обрядов и наблюдением за дв

Теорема Пифагора
  Каждый из нас сталкивался в школе с этой теоремой. Сейчас ее называют «теоремой Пифагора», но она была широко известна в древности задолго до рождения знаменитого грека. Существован

Десять книг счетного канона
  Поначалу китайская цивилизация развивалась по берегам рек Янцзы (Длинная) и Хуанхэ (Желтая) во времена легендарной династии Ся во втором тысячелетии до нашей эры. Династия Чан прави

Дом Мудрости
  В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк

Семь свободных наук и искусств
  В 529 году Юстиниан, римский император и христианин, закрыл языческие философские школы, включая Академию в Афинах. Так подошла к концу тысячелетняя история греческой математики. Мн

Перспектива в эпоху Возрождения
  Очень много писалось об итальянском Ренессансе как о периоде, определившем направление европейского сознания. Пробуждение интереса к классическим наукам соединилось с желанием выйти

Математика для общего блага
  Шестнадцатый век в Европе отмечен обещанием бесконечных возможностей. В предшествующие два столетия континент сотрясался различными бедствиями, как природными, так и созданными рука

Бракосочетание алгебры и геометрии
  Начиная со времен древней Греции математика была раздроблена на две основных ветви – геометрию и арифметику. Первая оперировала размерами, вторая – числами. Но между ними никогда не

Вселенная как часовой механизм
  В шестнадцатом веке основным источником информации об орбитах планет оставался «Альмагест» Птолемея (см. Главу 2). Громоздкая структура Птолемеевой системы эпициклов и деферентов пр

Математика в движении
  Мы уже упоминали, что Ньютон и Кеплер моделировали орбиты планет исключительно геометрически. Однако в космическом пространстве не существует реальных эллипсов, они – лишь невидимые

Океаны и звезды
  Все ранние цивилизации занимались составлением карт. Цели ставились разные – строительство, сбор налогов или подготовка к войне, однако землемер – одна из самых древних профессий, д

Уравнение пятой степени
  В XVI веке математики почти случайно натолкнулись на комплексные числа (см. Главу 11). К XVIII веку комплексные числа считались расширением области действительных чисел, но работа с

Новые геометрии
  С тех пор как в третьем столетии до нашей эры появились «Начала», евклидова геометрия (см. Главу 4) считалась самой совершенной из всех математических систем. Основанная на самых об

Диалекты алгебры
  В главе 11 мы видели, как алгебра освобождалась от кандалов геометрической размерности и как, начиная с Декарта, символы алгебры – те самые х и у – могли обозначать лю

Поля деятельности
  С середины восемнадцатого века события в дифференциальном и интегральном исчислениях шли рука об руку с развитием математического анализа физических явлений, особенно движения. Иссл

Заманчивая бесконечность
  Математики и философы всегда боролись с понятием бесконечности. Греки боялись бесконечности и ее противоположности – бесконечно малых величин. Их страх время от времени всплывал на

Об игральных костях и генах
  Исследование вероятности в том виде, каким мы видим это сегодня, началось лишь в семнадцатом веке, однако изучение комбинаций и перестановки объектов или событий имеет более длинную

Военные игры
  Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр – сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирую

Математика и современное искусство
  В двадцатом веке произошли множество научных открытий и взрыв технологического развития физики, биологии и гуманитарных наук. В эпоху Просвещения считалось, что накопленные знания о

Машинные коды
  В истории математики существовало множество параллельных течений, из которых то одно, то другое периодически выходило на передний план. Такими были отношения между арифметикой и гео

Хаос и сложность
  С начала девятнадцатого века математика рассматривалась как аналитический и логический предмет; к концу столетия она произвела на свет целый зверинец математических монстров, вроде

Благодарности
  Я премного благодарен профессору Айвору Граттану‑Гиннесу за его решительную поддержку моих разнообразных проектов, а также за его долготерпение и благоразумные советы касатель

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги