Свойства генетического кода.

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов. Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом. Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Гены tРНК, rРНК, sРНК белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию. Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. (См. лекцию 8) Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.

Внутри гена каждый нуклеотид входит в состав значащего кодона.

Участие ДНК, РНК и рибосом в процессах матричного синтеза белка:

У всех живых организмов ДНК является первичным носителем генетической информации. Это значит, что в структуре молекулы ДНК в виде последовательности нуклеотидов записана вся программа, необходимая для жизнедеятельности клетки, ее реакции на различные внешние воздействия.

У прокариот (доядерных организмов) вся наследственная информация представлена на одной кольцевой молекуле ДНК, состоящей из нескольких миллионов пар нуклеотидов. Иногда часть информации содержится в нескольких небольших кольцевых ДНК - плазмидах.

У эукариот (имеющих клеточное ядро) - ДНК в основном сосредоточена в хромосомах. В каждой хромосоме содержится одна двунитевая ДНК, размер которой достигает сотен миллионов пар нуклеотидов. Относительно маленькие молекулы ДНК содержатся в митохондриях. Они необходимы для синтеза митохондриальных РНК и митохондриальных белков. Двунитевая молекула построена по принципу комплементарности. Т. е. когда каждая из четырех НК предпочитает взаимодействовать (образовывать водородные связи) только с одной НК из трех возможных. Так аденин взаимодействует через О-Н связи только с тимином (А -Т), а гуанин с цитозином (Г - Ц).

 

Синтез полипептидной цепи (ДНК, РНК или белка) в клетках складывается из трех основных этапов: инициации, элонгации и терминации.

Инициация- образование связи между мономерными звеньями создаваемой полимерной цепи. Далее мономер присоединяется к образовавшемуся димеру, тримеру, тетрамеру и т.д. - это уже элонгация.

Элонгация- соединение очередного мономера с растущей полимерной цепью. Этот процесс происходит в активном центре фермента полимеразы. Затем участок, полимера к которому присоединился мономер, выдвигается из зоны активного центра фермента - это процесс транслокации.

Терминация - окончание сборки полимера. Для этого на матрице имеется определенный участок - терминатор (по его информации невозможно подобрать необходимый мономер).