рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Щелочно-алюмосиликатные стекла.

Щелочно-алюмосиликатные стекла. - раздел История, История развития стеклоделия Структурная Роль Алюминия (Al) В Стекле Идентична Его Роли В Кристаллических ...

Структурная роль алюминия (Al) в стекле идентична его роли в кристаллических алюмосиликатах, т.е. катионы А13+ могут находиться в четверной или шестерной ко­ординации по кислороду и образовывать координационные тетраэдры типа А104 (тетраэдры) и А106 (октаэдры).

Условием существования алюминия в том или ином координа­ционном состоянии в силикатных стеклах является соотношение между концентрацией щелочных (или щелочноземельных) оксидов и оксида А1203. При соотношениях Ме20/А1203>1 А13+ присутствует в стекле в тетраэдрическом окружении. Следует обратить внимание на то, что группировка [А104]5- в силикатных стеклах не существует самостоятельно. Она устойчива только в том случае, если вблизи тетраэдра [А104]5- расположен ион щелочного металла, например, натрия. Стабильной в этом случае является не просто группировка [А104]5- а группа атомов [(А104)5-На+]4- , в которой ион натрия не свя­зан с каким-либо определенным атомом кислорода, а локализован на тетраэдре [А104]5- частично компенсируя отрицательный заряд анионной группировки.

 

Атомы кислорода в вершинах тетраэдра А104 в этом случае являются мостиковыми и могут принимать участие в образовании химической связи с кремнекислородными тетраэдрами. Как и в кристаллических силикатах, тетраэдрические группировки алюминия могут, наравне с тетраэдрами SiO4, участвовать в построении структурного каркаса стекла, сочленяясь с ними вершинами. Образуется смешанная алюмокремнекислородная сетка.


 

При введении оксида алюминия в щелочно-силикатное стекло повышается степень связности структурной сетки, т.к. он встраивается в кремне-кислородный каркас и наряду с этим изменяет структурную роль щелочного компонента.


Наиболее благоприятные возможности для изоморфного замеще­ния ионов кремния на ионы алюминия создаются в присутствии катио­нов №+, К+, Са2+.

Существование алюминия в стеклах в шестерной координации наиболее вероятно в бесщелочных и малощелочных составах с вы­раженным кислотным характером. Щелочноземельные катионы малого радиуса Ве2+, Мg2+ способствуют стабилизации в стекле алюминия, являющегося модификатором.

 

9.Валентно-химическое описание строения стекла.

Химическая связь между атомами возникает как результат электростатического (кулоновского) взаимодействия электронов и ядер атомов.

Химические связи в веществах могут быть: валентные и ковалентные. Валентные связи возни­кают в результате перераспределения электронной плотности в системе атомов, участвующих в химической реакции. Различают ионную, ковалентную, донорно-акцепторную, дативную, металли­ческую валентные связи, отличающиеся друг от друга степенью об­обществления связевых электронов парой атомов или группой атомов химического соединения.

Невалентные связи возни­кают в результате электростатического взаимодействия между мо­лекулами или молекулярными группировками вещества. Образова­ние невалентных связей не сопровождается передачей электронов, но обусловлено индукционным, ориентационным или дисперсион­ным взаимодействием молекул или молекулярных образований.

В стеклах, как и в кристаллических твердых телах, невозможно выделить участки структуры, которые можно было бы считать от­дельными молекулами. В силу этого в твердых телах, в отличие от жидких и особенно газообразных, преобладает действие прочных валентных связей.

 

10. Химическая связь в стеклах, в соответствии с электронной теори­ей.

Согласно классической электронной теории, химическая связь в кварцевом стекле является преимущественно ковалентной (степень ионности 50%). В бинарных щелочно-силикатных стеклах типа Ме20—SiO2можно выделить два вида ионно-ковалентных связей: преимущественно ковалентные в цепочках атомов

-Si-О-Si-

 

и более ионные связи между щелочными катионами и анионным каркасом, т.е. связи типа -Ме-О-Si-.

 

—Степень ионности — ковалентности связей Si—О , Ме—О не яв­ляется постоянной для всех видов стекол и зависит от состава стекла в целом.

– Конец работы –

Эта тема принадлежит разделу:

История развития стеклоделия

Основы технологии стекла ситаллов и эмали... Стекло стеклообразное состояние... Строение стекла Кристаллохимическое описание строения стекла...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Щелочно-алюмосиликатные стекла.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

История развития стеклоделия.
История худ-го и промышл. Производства стеклоделия может быть условно поделена на след. периоды: 1 период: 4-3е тысячелетие до н.э. В первобытном обществе делаются первые попытки выплавлен

Стекло, стеклообразное состояние.
В природе и технике все вещества могут быть в сост: плазменном, газообразном, жидком и твердом. Твердые тела могут иметь кристаллич. или агрегатную структуру. Частный случай аморфного состояния-сте

Строение стекла.
Представление о стекле как о сложной системе изложил и научно обосновал Д.И, Менделеев. По Д.И. Менделееву, стекло не есть определенное химическое соединение как полагали многие химики первой полов

Кристаллохимическое описание строения стекла.
В основе данного описания лежат понятия ближнего и дальнего порядка в структуре веществ. Ближний порядок в общем случае озна­чает правильное расположение отдельных атомов относительно некоторого фи

Кварцеваое стекло.
Основной структурной единицей кварцевого стекла является кремнекислородный тетраэдр [SiO4]4-. Известны гео­метрические параметры группировки [SiO4]4-: расстояние Si-O рав­но 0

Теория валентных связей и структура стекол.
Эта теория позво­ляет объяснить образование пространственных координационных группировок (полиэдров), исходя из особенности строения атомов, учитывает энергетические характеристики внешних орбитале

Зонная теория.
Особенности строения внешних зон и характер их заполнения электронами позволяет классифицировать вещества на изолято­ры, полупроводники и проводники, а также уверенно предска­зать оптические электр

Вязкость.
Вязкость — важнейшая характеристика, предопределяющая процессы варки и выработки стекла, отжига и закалки. По закону Ньютона при движении одного слоя жидкости отно­сительно другого возника

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги