рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Граф состояний потоков в MS Windows 2000-2003. Особенности планирования в многопроцессорных системах.

Граф состояний потоков в MS Windows 2000-2003. Особенности планирования в многопроцессорных системах. - раздел История, Определение ОС. Функции ОС. Процессы и потоки. Классификация ОС. История развития 17.2 Особенности Планирования В Многопроцессорных Системах....

17.2 Особенности планирования в многопроцессорных системах.

 

Управление потоками в МПС:

Операционные системы Windows 2000-2003 руководствуется следующими базовыми стратегиями для решения того, на каких процессорах какие потоки выполняются:

- выбор процессора для готового потока, при наличии простаивающих процессоров;

- выбор процессора для готового потока, при отсутствии простаивающих процессоров;

- выбор потока для конкретного процессора, который освободился.

Выбор процессора для потока при наличии простаивающих:

Как только поток готов к выполнению, Windows сначала пытается подключить его к простаивающему процессору.

Если таких процессоров несколько, то выбор процессора производится в зависимости от версии операционной системы Windows (см. далее).

Как только процессор выбран, соответствующий поток переводится в состояние Standby.

При выполнении на этом процессоре поток простоя обнаруживает, что поток выбран и подключает его к процессору.

 

Выбор процессора для потока:

Выбор процессора для потока в Windows 2000:

Если простаивающих процессоров несколько, то предпочтение отдается сначала идеальному процессору для данного потока, затем предыдущему, а потом текущему (т. е. процессору, на котором работает поток простоя, отвечающий за планирование).

Если все эти процессоры заняты, операционная система выбирает первый простаивающий процессор, на котором может работать данный поток, для чего сканируется маска свободных процессоров в направлении убывания их номеров.

 

Выбор процессора для потока в Windows XP и 2003:

Выделяются простаивающие процессоры из числа тех, на которых маска привязки разрешает выполнение данного потока. Если маска привязки разрешает выполнение потока на текущем процессоре, то поток планируется к выполнению именно на этом процессоре.

Если маска привязки не разрешает выполнение потока на текущем процессоре, то выполняется следующий алгоритм.

 

Алгоритм выбор процессора для потока в Windows XP и 2003:

Если система имеет архитектуру NUMA и в узле, где находится идеальный процессор для потока, есть простаивающие процессоры, то список всех простаивающих процессоров уменьшается до этого набора. Если в результате такой операции в списке не останется простаивающих процессоров, список не сокращается.

Если в системе работают процессоры с технологией HT и имеется физический процессор, все логические процессоры которого свободны, список простаивающих процессоров уменьшается до этого набора. Если в результате такой операции в списке не останется простаивающих процессоров, список не сокращается.

Если текущий процессор относится к набору оставшихся простаивающих процессоров, поток планируется к выполнению именно на этом процессоре.

Если текущий процессор не входит в список оставшихся простаивающих процессоров, если это система с технологией HT и если есть простаивающий логический процессор на физическом, который содержит идеальный процессор для данного потока, то список простаивающих процессоров ограничивается этим набором. В ином идет поиск простаивающих логических процессоров на предыдущем физическом процессоре. Если такой набор не пуст, список простаивающих процессоров уменьшается до этого набора.

Из оставшегося набора простаивающих процессоров исключаются все процессоры, находящиеся в состоянии сна. (Эта операция не выполняется. если в ее результате такой список опустел бы.)

Поток подключается к процессору с наименьшим номером в оставшемся списке.

Выбор процессора для потока при отсутствии простаивающих:

При отсутствии простаивающего процессора Windows выполняет постановку нового потока на идеальный процессор:

1. Если этот процессор не входит в маску привязки потока, Windows выбирает для потока процессор с наибольшим номером (в Windows 2000 маска привязки может исключить идеальный процессор).

2. Если к идеальному процессору уже подключен какой-то поток, Windows сравнивает приоритеты текущего и нового потока. Если приоритет выполняемого потока меньше, чем нового, то текущий поток вытесняется в пользу нового.

3. Если для идеального процессора уже выбран поток, ожидающий в состоянии Standby выделения процессорного времени, и его приоритет ниже, чем потока, готовящегося к выполнению, последний вытесняет первый и становится следующим выполняемым на данном процессоре.

Выбор потока для конкретного процессора (Windows 2000 и XP):

В многопроцессорной системе Windows 2000 или Windows ХР из очереди готовых выбирается поток с наивысшим приоритетом, для которого выполняется одно из дополнительных условий:

- поток уже выполнялся в прошлый раз на данном процессоре;

- данный процессор должен быть идеальным для этого потока;

- поток провел в состоянии Ready более трех тактов системного таймера;

- поток имеет приоритет не менее 24.

Выбор потока для конкретного процессора (Windows 2003):

Поскольку в Windows Server 2003 у каждого процессора собственный список потоков, ждущих выполнения на этом процессоре, то по окончании выполнения текущего потока процессор просто проверяет свою очередь готовых потоков.

Если его очереди пусты, к процессору подключается поток простоя. Затем этот поток начинает сканировать очереди готовых потоков при других процессорах и ищет потоки, которые можно было бы выполнять на данном процессоре.

Заметьте, что в NUMA-системах поток простоя проверяет процессоры сначала в своем узле, а потом в других узлах.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Определение ОС. Функции ОС. Процессы и потоки. Классификация ОС. История развития

Определение ОС... Операционная система ОС комплекс системных программ обеспечивающий... Критерием эффективности ОС может быть например пропускная способность число выполненных задач за единицу времени...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Граф состояний потоков в MS Windows 2000-2003. Особенности планирования в многопроцессорных системах.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Машинный язык.
Микропрограмма действует просто как интерпретатор, который получает машинные команды, такие как MOVE, JUMP или ADD, и выполняет их в несколько маленьких шагов. Набор интерпретируемых инструкций опр

Системное и прикладное ПО.
Операционная система предназначена для тот, чтобы скрыть от пользователя все эти сложности. Она состоит из уровня программного обеспечения, который частично избавляет от необходимости общения с апп

Дополнительная функция ОС.
Кроме основной функции управления ресурсами ВС, от ОС зачастую требуется решение еще одной важной задачи – предоставления программного интерфейса доступа к аппаратным ресурсам в виде некоторой вирт

Процессы и потоки.
Процесс – абстракция, описывающая выполняющуюся программу. Для ОС процесс представляет собой единицу работы, заявку на потребление системных ресурсов. Одним из основных ресурсов является ад

Состояния процессов и потоков.
Выделяют 3 основных дискретных состояния процесса (потока): - Готов к выполнению – ждет ЦП; - Выполняется – выделен ЦП; - Приостановлен (блокирован) – ждет некоторого соб

Поддержка многозадачности.
По числу одновременно выполняемых задач ОС могут быть разделены на два класса: - однозадачные (например, MS-DOS, MSX); - многозадачные (OC EC, UNIX, Windows 9х, NT и выше).

Многозадачность.
Способ распределения процессорного времени между несколькими одновременно существующими в системе задачами (процессами или потоками) в режиме мультипрограммирования во многом определяет специфику О

Дисциплины обслуживания.
Бесприоритетные дисциплины – выбор из очереди производится без учета относительной важности задач и времени их обслуживания. Приоритетное обслуживание – отдельным задачам пре

Поддержка многопользовательского режима.
По числу “одновременно” работающих пользователей ОС делятся на: - однопользовательские (MS-DOS, Windows 3.x, Windows 9x); - многопользовательские (UNIX, Windows NT, 2000-2007).

Многопроцессорная обработка.
Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.

Особенности алгоритмов управления ресурсами.
Выше были рассмотрены характеристики ОС, связанные с управлением только одним типом ресурсов – процессором. Важное влияние на облик операционной системы в целом, на возможности ее использования в т

Системы пакетной обработки.
Системы пакетной обработки (batch processing) предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием

Системы пакетной обработки.
  Для одновременного выполнения выбираются задачи, предъявляющие отличающиеся требования к р

Системы реального времени.
Системы реального времени применяются для управления различными техническими объектами, такими, (станок, научная экспериментальная установка) или технологическими процессами (гальв

Многоуровневая структура.
Развитием монолитного подхода является многоуровневый, когда ОС реализуется как иерархии уровней. Уровни образуются группами функций ОС – файловая система, управление процессами и устройст

Монолитное ядро.
Наиболее распространенным и классическим вариантом реализации ядерного подхода является моноли́тное ядро́. Монолитность ядер усложняет их отладку, понимание кода

Модульное ядро.
Cовременная, усовершенствованная модификация архитектуры монолитных ядер ОС. В отличие от «классических» монолитных ядер, считающихся ныне устаревшими, модульные ядра, как правило, не треб

Достоинства и недостатки микроядра.
При микроядерном построении ОС работает более медленно, так как часто выполняются переходы между привилегированным и пользовательским режимом. Систему проще функционально развивать, добавл

Появление ОС.
Так как ОС появились и развивались в процессе конструирования компьютеров, то эти события исторически тесно связаны. Поэтому чтобы представить, как выглядели ОС, мы кратко рассмотрим следующие друг

Этап (1940-60).
Середина 40-х XX-века – первые ламповые вычислительные устройства. ОС еще не появились, все задачи организации вычислительного процесса решались программистом вручную с пульта управления.

Этап (1965-75).
1965-1975 годы переход к ИС, новое поколение ЭВМ – IBM/360, многопроцессорная ЭВМ для централизованных вычислений. Реализованы основные концепции, присущие современным ОС: - мульт

Этап (1970-80).
Начало 70-х годов – первые сетевые ОС, которые в отличие от многотерминальных ОС позволяли не только рассредоточить пользователей, но и организовать распределенное хранение и обработку данных между

Этап (1980-90).
Постоянное развитие версий ОС UNIX для ЭВМ различных архитектур. Начало 80-х годов – появление персональных компьютеров (ПК), которые стали мощным катализатором для бурног

Операционная система MS Windows 2000 и выше. Общая характеристика и основные функции. Структура MS Windows 2000-2003. Объекты в MS Windows 2000-2003.
  2.2 Основная характеристика Windows 2000-2008.   Система Windows 2000-2008 не является дальнейшим развитием ранее существовавших пр

Краткая характеристика.
  l Многоуровневая ОС. l Ядро работает в защищенном режиме. l Присутствует микроядро, но оно дополнительно не защищено от остальных фрагментов ядра (т.е. по сути при

Структура ядра.
l Исполняющая система, которая включает управление памятью, процессами, потоками, безопасностью, вводом/выводом, межпроцессорными обменами; Важные для производительности О

Типы объектов Windows 2000-2008.
Объекты исполнительной системы (executive object) представляются различными компонентами исполнительной системы. Они доступны программам пользовательского режима (защищенным

Структура объектов Windows 2000-2003.
Имя объекта Делает объект видимым другим процессам для совместного использования Каталог объектов Обеспечивает иерархичес

Защита объектов.
ОС Windows 2000 поддерживает два вида контроля доступа к объектам: - управление избирательным доступом (discretionary access control) – основной механизм контроля д

Избирательный доступ.
Основан на списках контроля доступа (access control list, ACL), которые описывают каким пользователям можно выполнять какие операции. При отсутствии ACL объект является незащищенным, и сис

Кэширование диска.
Перехват запросов к внешним блочным ЗУ, промежуточным программным слоем – подсистемой буферизации (ПБ). ПБ представляет собой буферный пул, располагающийся в ОЗУ, и комплекс программ, упра

RAID - 0.
Представляет собой дисковый массив, в котором данные разбиваются на блоки, и каждый блок записываются (или же считывается) на отдельный диск. Таким образом, можно осуществлять несколько оп

RAID - 1.
Зеркалирование - традиционный способ для повышения надежности дискового массива небольшого объема. В простейшем варианте используется два диска, на которые записываетс

RAID - 4.
Данные разбиваются на блочном уровне. Каждый блок данных записывается на отдельный диск и может быть прочитан отдельно. Четность для группы блоков генерируется при записи и проверяется при чтении.

Сравнение RAID-систем.
  Составные RAID системы: l RAID 0+1 / RAID 1+0 l RAI

Фрагментация и дефрагментация.
Файл, который занимает на диске более одного непрерывного участка, называется фрагментированным. Фрагментация диска- это появление на диске множества свободных учас

Long File Names.
FAT32 преодолела ограничение прежней системы наименования файлов "8.3". В VFAT имя файла может содержать до 255 символов. К счастью, FAT32 воспринимает файлы, которые уже существовали на

Перечень метафайлов
$MFT список содержимого тома NTFS $MFTmirr копия первых 4 записей таблицы MFT $LogFile

Заголовок атрибута
Смещение, байт Размер, байт Описание 0x00 Тип атрибута 0x04

Атрибуты файлов NTFS - 1
Standard Information (стандартная информация) Стандартный атрибут. Дата и время создания и последнего изменения файла, дата и время последнего доступа к файлу

Атрибуты файлов NTFS - 2
Volume Version версия тома, используется только в системных файлах тома Volume Information (информация о томе) Использует

Страничное распределение.
Виртуальное адресное пространство (ВАП) каждого процесса делится на части одинакового, фиксированного для данной ОС размера, называемые виртуальными страницами. Размер страницы кратен степени двойк

Сегментное распределение.
При страничной организации виртуальное адресное пространство процесса делится механически на равные части. Это не позволяет дифференцировать способы доступа к разным частям программы (сегментам), а

Сегментно-страничное распределение.
Данный метод представляет собой комбинацию страничного и сегментного распределения памяти и, вследствие этого, сочетает в себе достоинства обоих подходов. ВАП процесса делится на сегменты,

Архитектура API управления памятью.
    Адресное пространство процесса:

Проецируемые файлы.
“Как и виртуальная память, проецируемые файлы позволяют резервировать регион адресного пространства и передавать ему физическую память. Различие между этими механизмами состоит в том, что в последн

Взаимодействие процессов через общую область данных
      Для обеспечения когерентности процессы должны работ

Объекты Windows .
Основные понятия: Задание – набор процессов, управляемых как единое целое, с общими квотами и лимитами Процесс – контейнер для ресурс

Процессы.
Процесс – это совокупность системных ресурсов, задействованная для выполнения определенной работы. Понятие "процесс" включает следующее: - исполняемый код;

Потоки.
Поток (нить) – это непрерывная последовательность инструкций, выполняющих определенную функцию. Потоки не имеют собственного адресного пространства и получают доступ к адресному пр

Волокна (fibers).
Введены в Windows 2000 для переноса существующих серверных приложений из UNIX. Реализованы на уровне кода пользовательского режима. В потоке может быть одно или несколько волокон. Для ядра

Планирование загрузки однопроцессорной системы.
  Планирование загрузки процессорного времени: - В Windows реализована вытесняющая многозадачность, при которой ОС не ждет, когда поток сам захочет освободит

Граф состояний потоков в MS Windows 2000-2003. Поток простоя. Принципы адаптивного планирования.
16.1 Граф состояний потоков в MS Windows 2000.

Граф состояний потоков в MS Windows 2000-2003. Особенности планирования в ОС MS Windows Vista и Server 2008.
18.2 Особенности планирования в ОС MS Windows Vista и Server 2008.   Проблема неравномерного распределения ресурсов процессора:

Планирование загрузки процессорного времени в MS WINDOWS 2000-2003. Функции WIN 32 API создания и завершение процессов и потоков, управление потоками
  Планирование загрузки процессорного времени: В Windows реализована вытесняющая многозадачность, при которой ОС не ждет, когда поток сам захочет освободить

Параметры создания потока
Параметр psa является указателем на структуру SECURITY_ATTRIBUTES. Если Вы хотите, чтобы объекту ядра "поток" были присвоены атрибуты за

Функция CreateRemoteThread
Функция CreateRemoteThread создает поток, который запускается в виртуальном адресном пространстве другого процесса.   HANDLE Cre

Приоритеты потоков
Приоритет Назначение THREAD_PRIORITY_ABOVE_NORMAL Приоритет на 1 пункт выше класса приоритета. TH

Функция TerminateThread
Вызов этой функции также завершает поток: BOOL TerminateThread( HANDLE hThread, DWORD dwExitCode); В параметр dwExitCode помещается код завершения потока.

Засыпание и переключение потоков
VOID Sleep ( DWORD dwMilliseconds ); Эта функция приостанавливает поток па dwMilliseconds миллисекунд. Отметим несколько важных моментов, с

BOOL SwitchToThread();
Функция SwitchToThread позволяет подключить к процессору другой поток (если он есть). Вызов SwitchToThread аналогичен вызову Sleep с передачей в dwMilliseconds

DWORD SuspendThread(HANDLE hThread);
Засыпание и переключение потоков VOID Sleep ( DWORD dwMilliseconds ); Эта функция приостанавливает поток па dwMilliseconds миллисекунд. Отметим несколько важных моментов, с

Межпроцессорное взаимодействие. Передача информации в MS Windows 2000-2003. Анонимные каналы. Почтовые ящики. Функции WIN 32 API.
  Анонимные каналы Анонимные каналы не имеют имен. Не пригодны для обмена через сеть. Главная цель – служить каналом между родительским и дочерним процессом

Межпроцессорное взаимодействие. Передача информации в MS Windows 2000-2003. Именованные каналы. Почтовые ящики. Функции WIN 32 API.
  Виды межпроцессорного взаимодействия (IPC) Предотвращение критических ситуаций Синхронизация процессов Передача информации от одного процесса другому

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги