рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Розрахунок каскадів на ОП

Розрахунок каскадів на ОП - раздел История, Пасивні компоненти. Резистори. Конденсатори. Індуктивні компоненти Нехай Необхідно Побудувати Підсилювач На Основі Неінвертувального Включення О...

Нехай необхідно побудувати підсилювач на основі неінвертувального включення ОП, з вхідним опором , , смуга частот . Коефіцієнти частотних спотворень на цих частотах не повинні перевищувати 3 дБ. Операційний підсилювач має внутрішню корекцію, його параметри: Живлення однополярне.

Спочатку обираємо схему (рис. 12.22).

 

Рисунок 12.22 – Принципова схема неінвертуючого підсилювача

 

Для забезпечення обираємо кОм.

В такому випадку

 

кОм.

 

Для забезпечення (100раз) з умови

 

 

обираємо .

Визначаємо

 

.

.

 

Перевіримо виконання коефіцієнта частотних спотворень для частоти

,

 

де - фактичний коефіцієнт підсилення підсилювача на частоті

 

 

де - коефіцієнт підсилення ОП з розімкненим колом ВЗЗ на частоті ; - коефіцієнт передачі кола ВЗЗ.

 

.

 

Оскільки ОП має внутрішню корекцію, його АЧХ з розімкненим колом ВЗЗ має вигляд (рис. 12.23):

 

Рисунок 12.23 – АЧХ обраного ОП

 

З рисунка 12.23, можна визначити для части . Для нахилу АЧХ -20дб/дек,

 

.

Визначимо

 

.

 

Коефіцієнт частотних спотворень дорівнює

 

 

У такий спосіб задача не розв’язана.

Проектований підсилювач треба будувати, як послідовне з’єдння двох каскадів, з тобто

 

.

 

В цьому випадку номінали елементів будуть дорівнювати без змін.

Коефіцієнт передачі кола ЗЗ складає

 

,

тоді

.

 

Результуючий коефіцієнт підсилення двох каскадів складає

 

.

 

Коефіцієнт частотних спотворень відповідно

 

 

тобто рівень частоти спотворень задовольняє вимогам.

Остаточна принципова схема підсилювача подана нижче

Рисунок 12.24 – Принципова схема розрахованого підсилювача

 

12.9 Запитання та завдання для самоконтролю

 

1. Побудувати схему двокаскадного диференціального підсилювача на основі ОП. Забезпечити загальний коефіцієнт підсилення 100. Передбачити можливість балансування нуля схеми.

2. Спроектуйте інвертувальний підсилювач на ОП з коефіцієнтом підсилення 50, забезпечте його смугу пропускання 100 Гц – 50 кГц, вхідний опір не менше 100 кОм. Живлення однополярне. Тип ОП – К140УД12.

3. Визначить смугу пропускання неінвертувального підсилювача, якщо він виконаний на ОП К140УД7 і забезпечує коефіцієнт підсилення 20, значення розділового конденсатора 1,0 мкФ, вхідний опір 100 кОм.

4. Яким вимогам повинен відповідати ОП інвертора імпедансу?

5. Які коефіцієнти підсилення каскадів К1 та К2 помножувача ємності?

6. Які опори (вхідний, вихідний) повинні бути забезпечені в помножувачі ємності?

7. Визначити (Мн = Мв = 3 дБ) повторювача напруги на ОП, якщо операційний підсилювач має внутрішню корекцію, а його параметри: ; . Інші параметри ОП відповідають ідеальному ОП.

8. Побудувати підсилювач на основі неінвертувального включення ОП (живлення двополярне) з вхідним опором , для смуги частот , за умови Мн = Мв = 3 дБ. Операційний підсилювач має внутрішню корекцію, його параметри , .

Література [27-35]


13 Активні фільтри

 

13.1 Загальні відомості про фільтри

 

При використанні ОП як одного з елементів пристрою з’являється можливість синтезувати характеристику будь–якого LC фільтра без використання котушок індуктивності. Такі фільтри відомі під назвою «активних фільтрів», у зв’язку з наявністю в схемі активного елемента (ОП).

Активні фільтри можна використовувати для реалізації фільтрів НЧ,ВЧ, смугопроникальних і смугозатримувальних, вибираючи тип фільтра у залежності від його властивостей; рівномірності підсилення в смузі пропускання, крутості перехідної ділянки АЧХ або незалежності часу затримки від частоти. Окрім цього можна також побудувати «усепроникаючі фільтри» з плоскою АЧХ, але нестандартною ФЧХ (такі фільтри називають «фазові коректори»), або навпаки фільтри з постійним фазовим зсувом, але довільною АЧХ.

Коефіцієнт передачі фільтра у загальному випадку можна записати у вигляді

 

(13.1)

 

де – дійсні числа; р – оператор Лапласа, для синусоїдального сигналу .

Порядок фільтра визначається найбільшим степенем оператора р у знаменнику. Якщо відомі корені чисельника і корені знаменника, то коефіцієнт передачі можна записати у вигляді

 

(13.2)

 

При коефіцієнт передачі дорівнює нулю, тому корені називають нулями. При коефіцієнт передачі дорівнює нескінченності, тому корені називають полюсами.

Коефіцієнт передачі фільтра повністю визначається значеннями нулів і полюсів, а також сталим множником

Коефіцієнт передачі фільтра першого порядку

 

(13.3)

 

де

У відповідності з виразом (13.3) коефіцієнт передачі фільтра НЧ може бути записаний при

 

 

- для ФВЧ, при

 

 

- для фазового коректора, при ,

 

 

Коефіцієнт передачі фільтра другого порядку

 

(13.4)

 

Виходячи з виразу (13.4), коефіцієнт передачі відповідних фільтрів можна подати у вигляді:

- для ФНЧ, при

 

 

- для ФВЧ, при

 

 

- для смугопроникального фільтра, при

- для смугозатримувальних фільтрів, при

- для фазового коректора, при

Фільтри другого порядку можна реалізувати, з’єднуючи відповідним чином ланки першого і нульового порядку. Спосіб такої реалізації витікає з можливої форми подання коефіцієнта передачі у вигляді елементарних функцій інтегрування, диференціювання, підсумовування. Оскільки способів подання виразу (13.4) через елементарні функції може бути досить багато, то і число можливих схемних рішень фільтрів другого порядку може бути значним.

На практиці фільтр характеризується трьома основними параметрами: – характеристична частота (зрізу), що характеризує рівень послаблення АЧХ –3 дБ; модуль коефіцієнта передачі у смузі пропускання; – коефіцієнт згасання коливань.

Смуга пропускання і добротність Q пов’язані з коефіцієнтом згасання співвідношенням

 

 

Відомі три найбільш популярні типи активних фільтрів: Баттерворта, (максимально плоска характеристика в смузі пропускання), фільтр Чебишева (найбільш крутий перехід від смуги пропускання до смуги придушення) та фільтр Бесселя (максимально плоска характеристика часу затримки). Будь–який з цих фільтрів можна реалізувати за допомогою різних схем. Всі вони придатні для побудови фільтрів верхніх, нижніх частот і смугових фільтрів.

 

13.2 Фільтри Баттерворта і Чебишева

 

Фільтр Баттерворта, як відзначено вище, забезпечує найбільш плоску характеристику в смузі пропускання, що однак досягається за рахунок повільної зміни характеристики у перехідній області, тобто між смугами пропускання і затримки. Він також має погану фазочастотну характеристику, тобто таку, що викликає значні фазові спотворення. Його амплітудно–частотна характеристика задається таким виразом

 

(13.5)

 

де n – визначає порядок фільтра (число полюсів); – частота зрізу.

Збільшення числа полюсів дає можливість зробити більш плоскою ділянку АЧХ в смузі пропускання і збільшити крутість спаду від смуги пропускання до смуги затримки, рис. 13.1.

Тобто слід розуміти, що вибираючи фільтр Баттерворта, для досягнення максимально плоскої АЧХ слід поступитися всіма іншими вимогами.

 

Рисунок 13.1 – Нормовані характеристики фільтра нижніх частот Баттерворта

 

У більшості випадків найбільш важливим є забезпечення вимоги необхідної нерівномірності в смузі пропускання, яка не повинна перевищувати встановленого значення, наприклад 1 дБ. Фільтр Чебишева відповідає цій вимозі, при цьому допускається деяка нерівномірність по всій смузі, але при цьому значно збільшується крутість зламу АЧХ. Для фільтра Чебишева задаються числом полюсів і нерівномірністю в смузі пропускання. Припускаючи збільшення нерівномірності в смузі, отримають більш крутий злам АЧХ. АЧХ фільтра Чебишева задається таким виразом

(13.6)

 

де – поліном Чебишева степеня n; – константа, що визначає нерівномірність АЧХ в смузі пропускання.

Фільтр Чебишева як і фільтр Баттерворта має ФЧХ, що викликає значні фазові спотворення сигналів. На рис. 13.2(а,б) подані для порівняння характеристики АЧХ 6–полюсних фільтрів нижніх частот, 1 – фільтр Бесселя, 2 – фільтр Баттерворта, 3 – фільтр Чебишева, RC – фільтр. Як можна бачити з рис. 13.2 всі вказані типи фільтрів набагато кращі за RC фільтр.

а)

б)

Рисунок 13.2 – Порівняння характеристики 6–полюсних фільтрів нижніх частот

Але слід відзначити, що і ці типи фільтрів не вільні від недоліків, для фільтра Баттерворта це поступове зниження характеристики при наближенні до частоти , а для фільтра Чебишева – пульсації, що розподілені по всій смузі, кількість яких зростає разом з порядком фільтра. Окрім цього, активні фільтри, що побудовані з елементів, номінали яких мають деякий допуск, будуть мати характеристики, що відрізняються від розрахункових. На рис. 13.3 проілюстровано цей вплив.

Але разом з вказаними недоліками, фільтр Чебишева є досить раціональною структурою, інколи його називають рівнохвилевим фільтром, оскільки його АЧХ в перехідній області має велику крутість за рахунок того, що в смузі пропускання розподілено декілька рівновеликих пульсацій. Навіть при відносно малих пульсаціях (приблизно 0,1 дБ) фільтр Чебишева забезпечує набагато більшу крутість АЧХ в перехідній області, ніж фільтр Баттерворта. Розрахунок показує, що для забезпечення нерівномірності АЧХ в смузі пропускання не більше 0,1 дБ і згасання 20 дБ на частоті, що відрізняється на 25% від граничної частоти смуги, необхідним є 19–полюсний фільтр Баттерворта і тільки 8–полюсний фільтр Чебишева. Ще кращі показники можуть бути досягнуті у так званих еліптичних фільтрах (або фільтрах Кауера). В таких фільтрах допускаються пульсації АЧХ як в смузі пропускання, так і в смузі затримки для досягнення великої крутості перехідної ділянки АЧХ навіть більшої, ніж у фільтрів Чебишева.

 

Рисунок 13.3 – Вплив зміни параметрів елементів на характеристику активного фільтра

 

13.3 Фільтри Бесселя

 

Як було встановлено раніше, АЧХ фільтра не дає про нього повної інформації. Фільтр навіть з плоскою АЧХ може давати великі фазові спотворення. У тих випадках, коли необхідно зберегти форму сигналу, бажано мати фільтр з лінійною ФЧХ. Вимоги забезпечення лінійної ФЧХ еквівалентні вимогам забезпечення постійного часу затримки. Фільтр Бесселя (друга назва фільтр Томсона) має плоску ділянку частотної характеристики групового часу затримки в смузі пропускання, подібно до того як фільтр Баттерворта має найбільш плоску АЧХ. На рис. 13.4 зображені нормовані за частотою графіки ГЧЗ для 6–полюсних фільтрів нижніх частот Бесселя і Баттерворта.

 

Рисунок 13.4 – Порівняння ГЧЗ для 6–полюсних ФНЧ Бесселя (1) і Баттерворта (2)

 

Вказана форма характеристики ГЧЗ фільтра Баттерворта викликає появу ефектів викидів при проходженні через фільтр імпульсних сигналів. З другого боку, сталість характеристики ГЧЗ у фільтра Бесселя призводить до ще більш пологої перехідної ділянки, навіть ніж у характеристики фільтра Баттерворта.

Існують способи проектування фільтрів, в яких робиться спроба покращити робочі параметри фільтра Бесселя у частотній області, навіть нехтуючи сталістю ГЧЗ заради зменшення часу зростання і покращення АЧХ. Фільтр Гауса має практично аналогічну до фільтра Бесселя ФЧХ, але кращу перехідну характеристику.

Другий цікавий клас – це фільтри, що дозволяють отримати однакові пульсації кривої часу запізнення у смузі пропускання (аналогічно пульсаціям АЧХ фільтра Чебишева) і забезпечити приблизно однакове запізнення для сигналів зі спектром до смуги затримки. Ще один підхід до створення фільтрів з постійним часом запізнення – це застосування усепроникальних фільтрів, так званих коректорів у часовій області. Такі фільтри мають постійну АЧХ, а зсув фаз може змінюватися відповідно до конкретних вимог. Таким чином, їх можна застосовувати для вирівнювання часу запізнення будь–яких інших фільтрів (Баттерворта або Чебишева).

 


13.4 Порівняння фільтрів різних типів

 

Не звертаючи увагу на раніше зроблені зауваження про перехідну характеристику фільтрів Бесселя, слід все ж відзначити, що він має дуже добрі властивості у часовій області у порівнянні з фільтрами Баттерворта і Чебишева. Фільтр Чебишева при його дуже добрій АЧХ має найгірші параметри у часовій області. Фільтр Баттерворта дає компроміс між частотними і часовими характеристиками. На рис. 13.5 подана інформація про робочі характеристики усіх трьох типів фільтрів у часовій області, що доповнює наведені раніше графіки АЧХ. Їх аналіз показує, що у тих випадках, коли важливими є параметри фільтра у часовій області, бажаним є застосування фільтра Бесселя.

 

Рисунок 13.5 – Порівняння перехідних процесів для 6–полюсних фільтрів НЧ

 

 

13.5 Схеми активних фільтрів на ОП

 

Відомо багато схем активних фільтрів, які використовуються для отримання необхідної характеристики фільтра, але всі вони повинні відповідати таким вимогам:

– мати малу кількість елементів, як активних, так і пасивних;

– забезпечувати легкість регулювання;

– забезпечувати малий вплив розкиду параметрів елементів, особливо конденсаторів;

– забезпечувати відсутність жорстких вимог до операційного підсилювача, особливо по вимогах швидкості зростання, ширини смуги і вихідному опору;

– забезпечувати можливість створення високодобротних фільтрів;

– забезпечувати нечутливість характеристик фільтрів до коефіцієнта підсилення ОП.

Фільтр, який вимагає використання високоточних елементів, важко наладнати, і по мірі старіння елементів настроювання губиться. Так звана схема фільтра на основі джерела напруги, що керується напругою ДНКН дуже поширена, в основному завдяки своїй простоті і малій кількості елементів, але ця схема є дуже чутливою до зміни параметрів елементів. Для порівняння, зацікавленість, що виникла до складних гіраторних схем, зумовлена їх нечутливістю до малих змін параметрів елементів.

 

– Конец работы –

Эта тема принадлежит разделу:

Пасивні компоненти. Резистори. Конденсатори. Індуктивні компоненти

Перелік скорочень Вступ Пасивні компоненти... ПЕРЕЛІК СКОРОЧЕНЬ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Розрахунок каскадів на ОП

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПЕРЕЛІК СКОРОЧЕНЬ
  АЕ активний елемент АФ активний фільтр АЧХ амплітудо-частотна характеристика

Класифікація й основні параметри резисторів
Згідно найбільш поширеній класифікації розрізняють такі типи резисторів (resistors): 1. Постійні резистори з фіксованим значенням опору, залежно від призначення бувають: загального

Маркування резисторів
На кожному недротяному резисторі вказуються номінальний опір, допустимі відхилення опору від номінального та тип резистора. Якщо рівень шумів резистора менше 1 мкВ/В, на ньому ставиться буква А.

Спеціальні резистори
Спеціальні або нелінійні резистори – це елементи із заздалегідь передбаченими та спрямованими змінами опору при наявності тих або інших впливів. Варистори (varistors) – це елементи,

Застосування резисторів у схемотехніці
Резистори у схемотехніці виконують одну з основних функцій – забезпечення зміщення робочої точки транзисторних каскадів за допомогою подільника напруги (рис. 1.3, а) або подільника струму (рис. 1.3

Конденсатори
Електричний конденсатор (capacitor) – це елемент, що являє собою систему з двох провідників (обкладинок), розділених діелектриком, і володіє властивістю накопичувати електричну енергію (ємні

Загальна класифікація конденсаторів
За характером зміни ємності конденсатори ділять на декілька груп (рис. 1.4, 1.5). Конденсатори постійної ємності – це конденсатори з фіксованою ємністю, що у процесі експлуатації не регулю

Основні параметри конденсаторів
Питома ємність конденсатора – відношення ємності до об’єму або маси конденсатора. Цей параметр використовується при масогабаритній оптимізації конструкції. Номінальна ємність конденсатора

Маркування конденсаторів
Повне маркування конденсаторів містить: позначення типу конденсатора, номінальні ємність і напругу, допустиме відхилення ємності від номінальної (у процентах), групу ТКЄ, місяць і рік випуску. Марк

Конденсатори змінної ємності
Конденсатори змінної ємності (КЗЄ) – елементи радіоапаратури, призначені для зміни параметрів резонансних контурів. Конструкція будь-якого конденсатора змінної ємності містить: систему нер

Нелінійні конденсатори
Варикондами (varicond) називаються конденсатори з діелектриком зі спеціального сегнетокерамічного матеріалу, що володіє властивістю різко змінювати діелектричну проникність при зміні напруже

Високочастотні котушки індуктивності та дроселі
Залежно від призначення розрізняють: – контурні котушки (coils), які утворюють разом з конденсаторами коливальний контур (oscillatory circuit); – котушки зв'язку, як

Трансформатори
Трансформатором (transformer) називається елемент, призначений для одержання різних за амплітудою, потужністю і фазою змінних напруг, а також здійснення гальванічної розв'язки в електричному

Запитання та завдання для самоконтролю
1. За якими групами класифікують резистори? 2. Що таке номінальний опір резистора? 3. Перелічте основні функції резисторів. 4. Від чого залежить електричний опір тензорез

Класифікація і маркування діодів
  Діодами називають двоелектродний прилад, основою якого є електронно-дірковий перехід. Виготовляються діоди з кремнію, германію або арсенід галію. Конструктивно діод являє с

Маркування малопотужних діодів та діодів середньої потужності
Як правило, використовують маркування, яке складається із 5 або 6 елементів. Перший елемент маркування – (буква або цифра), яка визначає матеріал, з якого виготовляється напівпровідниковий діод:

Маркування надвисокочастотних діодів
Змішувальні – 1; детекторні – 2; параметричні – 4; регулюючі – 5; перемножувальні – 6; генераторні – 6. Варикапи: підстроюючі – 1; помножувальні – 2. Тунельні діоди: підсилюючі –

Вольт-амперна характеристика діода
Властивостями p-n переходу визначаються всі найважливіші параметри і характеристики напівпровідникового діода. Реальна характеристика діода приведена на рис. 2.2.  

Пробій діода
При великій зворотній напрузі струм діода починає різко зростати. Це явище називається пробоєм. Відмітимо, що пробій супроводжується виходом з ладу діода лише в тому випадку, коли виникає надмірний

Тепловий пробій
Він виникає внаслідок нагрівання переходу струмом, що проходить через нього, при недостатньому тепловідводі, який забезпечує стійкість теплового режиму переходу. В режимі постійного струму

Вплив температури на характеристики діода
При збільшенні температури різко зростає концентрація неосновних носіїв в напівпровідниках і, як наслідок, зворотній струм переходу I0, згідно з співвідношенням

Напівпровідникові стабілітрони
  Напівпровідникові стабілітрони – це діоди на зворотній гілці вольт-амперної характеристики яких є дільниця зі слабою залежністю напруги від струму, тобто стабілітрон працює в режимі

Варикапи
  Варикапи – це напівпровідниковий діод, в якому використовується залежність ємності p-n переходу від зворотної напруги, тобто це елемент з електрично керуваною величиною електроємнос

Випрямляючі діоди
  Випрямляючі діоди призначені для перетворення змінного струму пониженої частоти в постійний і вони розподіляються на випрямляючі діоди Iвипр < 10 А та силові вентилі (

Високочастотні діоди
Ge i Si ВЧ діоди з точковим контактом використовуються на частотах близьких до декілька сот МГц для випрямлення, детектування коливань та інших нелінійних перетворень. Електронно-дірковий

Обернені діоди
  Обернений діод – різновидність тунельного діоду, в якого струм піку Іп = 0. Вольт-амперна характеристика та умовне позначення обернених діодів на електричних

Мпульсні діоди
Імпульсні діоди використовуються для роботи в ключових схемах. Крім основних параметрів Iпр, Uпр, Iзвор, Uзвор для діодів цього типу приладів вказ

Запитання та завдання для самоконтролю
1. Назвіть основні матеріали для виготовлення діодів. 2. Що характеризує температурний коефіцієнт напруги? 3. Для чого призначені випрямляючі діоди? 4. Чим відрізняються

Структура транзисторів
Транзистором називають електроперетворювальний напівпровідни-ковий прилад, який складається, яке правило, із двох p-n переходів. Структура площинного транзистора схемати

Класифікація біполярних та уніполярних транзисторів
  Класифікація транзисторів по їх призначенню, фізичним властивостям, основним електричним параметрам, конструктивно-технологічним ознакам, роду початкового напівпровідникового матері

Принцип дії біполярного транзистора
  Енергетична діаграма для площинного транзистора p-n-p типу приведена на рис. 3.3.

Статичні параметри біполярних транзисторів
  Як елемент електричної схеми транзистор завжди використовується таким чином, що один із його електродів є вхідним, другий вихідним, а третій – спільним. В залежності від того, який

Режими роботи і статичні характеристики біполярних транзисторів
  Поряд з описаним активним режимом транзистор в ряді імпульсних, ключових та інших схем транзистор може працювати в режимі відсікання або в режимі насичення. В режимі відсіч

Параметри транзистора як чотириполюсника
При роботі транзистора з малим сигналом можна вважати, що робочі ділянки ВАХ біполярного транзистора є лінійними, а сам транзистор є лінійним підсилювачем (елементом). При цьому його зручно предста

Частотні властивості біполярного транзистора
  Параметри транзистора в діапазоні частот до 800-1000 Гц практично не залежать від частоти. З підвищенням частоти починає проявлятися комплексний характер параметрів транзистора і в

Принципи підсилення в транзисторі при активному режимі роботи
  В схемі зі спільною базою в вихідному колі (колекторному) протікає майже той же струм, що і у вихідному колі (емітері), тому підсилення струму в цьому випадку відсутнє. Проте ця схе

Робота транзистора в імпульсному режимі
  Транзистор часто використовують в імпульсних пристроях та в якості транзисторного ключа. При роботі транзистора в імпульсних пристроях від нього, як правило, вимагається неспотворен

Будова та характеристики уніполярних транзисторів
  Канальним транзистором називається трьохелектродний напівпровідниковий прилад, в якому керування струмом здійснюється шляхом зміни товщини напівпровідникового шару, що проводить стр

МДН-транзистори
  Будова МДН-транзисторів подана на рис. 3.15. Вони розподіляються на дві групи: з вбудованим і з індуктивним каналами.

Параметри уніполярних транзисторів
Основним параметром уніполярних транзисторів є крутизна прохідної ВАХ, яка визначається рівнянням

Частотні властивості уніполярних транзисторів
  Принцип дії польових транзисторів не зв’язаний з інжекцією неосновних носіїв заряду в базі та їх відносно повільним рухом до КП. Це прилад без інжекції, тому інерційність та частотн

Запитання та завдання для самоконтролю
1. Як можна збільшити швидкодію транзистора, що працює в режимі ключа? 2. Чи залежать параметри транзистора в діапазоні частот до 800-1000 Гц від частоти? 3. Що є основою транзист

Коефіцієнти підсилення
  Коефіцієнт підсилення – один з найважливіших показників анало­гових електронних пристроїв, який показує у скільки разів корисний ефект, при заданому навантаженні на виході пристрою,

Амплітудно-частотна характеристика. Коефіцієнти частотних спотворень
  Сигнал, проходячи крізь пристрій аналогової обробки, перетво­рюється. Форма складного сигналу на виході лінійного перетворювача може відрізнятися від форми, сигналу на його вході у

Фазочастотна характеристика
  Фазочастотна характеристика підсилювача показує залеж­ність від частоти фазово

Перехідні характеристики. Спотворення імпульсних сигналів
  Перехідною характеристикою (ПХ) підсилювача називається залеж­ність миттєвого значення вихідної напруги (або струму) від часу при стрибкоподібній зміні вхідної напруги (струму) (рис

Нелінійні спотворення. Коефіцієнт нелінійних спотворень
  Нелінійні спотворення – це спотворення форми вихідного сигна­лу, спричинені наявністю в схемі підсилювача нелінійних елементів. Активні елементи підсилювальних схем в процесі роботи

Амплітудна характеристика. Динамічний діапазон
  Амплітудною характеристикою (АХ) підсилювального пристрою зве­ться залежність сталого значення вихідної напруги бід вхідної

Коефіцієнт корисної дії. Номінальна вихідна потужність
  Коефіцієнт корисної дії (ККД) підсилювача або його окремого каскаду визначається відношенням  

Внутрішні завади аналогових пристроїв
  Для оцінки якості та умов роботи пристроїв не­обхідно використовувати такі допоміжні поняття: наводка, фон, мікро­фонний ефект, тепловий шум. Наводкою зветься напруга, утво

Запитання та завдання для самоконтролю
  1. Сформулюйте означення АЧХ каскаду. По якому рівню визначають ширину смуги пропускання при підсиленні а) напруги; б) потужності. 2. Нарисуйте ідеальну і реальну ФЧХ каска

Основні засоби забезпечення зворотного зв’язку
  Зворотний зв’язок це передача сигналу з виходу підсилювача чи окремого його каскаду на вхід (рис. 5.1).  

Вплив зворотних зв’язків на коефіцієнти підсилення струму та напруги
  Якщо коефіцієнт підсилення підсилювача без зворотного зв’язку позначити , коеф

Вплив зворотних зв’язків на вхідний та вихідний опір
  Характер зміни вхідного опору визначається способом введення зворотного зв’язку у вхідне коло, а вихідного опору — у вихідне коло. Для визначення зміни вхідного опору у вип

Вплив зворотного зв’язку на інші показники пристрою
  Якщо позначити напругу гармонік, фону чи завади на вході пристрою з ВЗЗ як

Стійкість пристрою зі зворотним зв’язком
  Питання стійкості та використання різних критеріїв щодо її оцінки є основним у схемотехнічних дисциплінах при розгляді питань проектування аналогових і цифрових пристроїв. Нагадаємо

Запитання та завдання для самоконтролю
  1. Нарисуйте структурні схеми каскаду охопленого зворотним зв’язком: а) паралельним по напрузі; б) паралельним по струму; в) послідовним по напрузі; г) послідовним по струму. Поясні

Кола живлення каскадів на уніполярних транзисторах
  Кола живлення, що забезпечують функціонування каскадів на польових транзисторах Зазначимо, що уніполярні транзистори бувають трьох типів: польові (ПТ) з керованим p–n–переход

Кола живлення каскадів на біполярних транзисторах
  Властивості біполярних транзисторів (БТ) як активних елементів визначаються його вхідними, вихідними та прохідними характеристиками. Типовий вигляд деяких характеристик БТ зображено

Динамічні характеристики каскадів
  У розрахунках електричних характеристик підсилювальних кас­кадів використовуються такі динамічні характеристики: - вихідна — залежність вихідного струму бід вихідної напруг

Запитання та завдання для самоконтролю
  1. Яким чином впливає на режим роботи підсилювального каскаду резистор навантаження та його зміна? 2. Визначте, які схеми підсилювальних каскадів забезпечують найбільшу сті

Використання еквівалентних схем для аналізу каскадів попереднього підсилення
Попередні підсилювальні каскади призначені для підсилення малої напруги вхідного сигналу до значення, достатнього для функ­ціонування кінцевих (звичайно потужних) каскадів (рис. 7.1). Однією а осно

Аналіз резисторного підсилювального каскаду зі спільним емітером у різних частотних областях
  Під час аналізу підсилювального каскаду на БТ (рис. 7.8) слід пам’ятати, що параметри БТ мають яскраво виражену залежність від час­тоти, наприклад  

Перехідні характеристики резисторного підсилювального каскаду
  У процесі роботи підсилювального каскаду з імпульсним сигналом ємності та

Повторювачі напруги
  Витоковий повторювач (каскад спільній стік) становить собою каскад, охоплений 100% ВЗЗ послідовного виду за напругою (рис. 7.14, а, б). Зворотний зв’язок забезпечується так само, як

Повторювачі струму
  Каскад із спільною базою (рис. 7.18, а) можна розглядати як каскад спільний емітер (СЕ), охоплений 100%–вим паралельним від’ємним зв’язком за струмом (рис. 7.18, б).  

Каскади з динамічним навантаженням
  За побудови каскадів попереднього підсилення знаходить засто­сування принцип динамічного навантаження, який дозволяє дістати ве­ликий коефіцієнт підсилення. Очевидно, що підвищення

Диференціальні каскади
  Ефективним засобом зменшення впливу зовнішніх факторів (зміни температури, напруги живлення, розкиду параметрів на роботу підсилю­вача) є використання диференціальних каскадів (ДК),

Каскади на складених транзисторах
  Складений транзистор використовується у каскадах, де необхід­но забезпечити великий коефіцієнт підсилення струму. Найбільш по­ширений складений транзистор за схемою Дарлінгтона (рис

Запитання та завдання для самоконтролю
  1. Як зміниться коефіцієнт підсилання каскаду на середніх час­тотах, якщо замість одного резистора навантаження ввімкнути два од­накових у паралель? а)

Необхідність корекції та її принципи
  На практиці виникає необхідність забезпечити широку смугу пропускання пристрою (1, 10, 100 МГц). Прості схеми підсилювачів не можуть забезпечити рівномірне підсилення сигналу у широ

Методи визначення параметрів, що забезпечують рівномірність АЧХ та лінійність ФЧХ у найбільшій області частот
  Метод визначення параметрів схеми корекції, що забезпечує рівномірність АЧХ у найбільшій області частот, запропонований Г.В. Брауде. Згідно з цим методом, частотна характеристика мо

Введемо для спрощення нові змінні
    Тоді  

Каскади з індуктивною ВЧ корекцією
  Каскад з індуктивною корекцією показано на рис. 8.6, а. Корекція здійснюється за допомогою L, що включається послідовно з навантаженням. Така корекція зветься двопол

Каскади з індуктивною ВЧ корекцією
  Каскад з індуктивною корекцією показано на рис. 8.6, а. Корекція здійснюється за допомогою L, що включається послідовно з навантаженням. Така корекція зветься двопол

Каскади з НЧ корекцією
  Принцип дії НЧ корекції, рис. 8.13, базується на тому, що навантаження каскаду змінюється з частотою, при цьому для елементів схеми виконуються такі умови  

Запитання та завдання для самоконтролю
1. Що викликає зменшення підсилення в області НЧ (ВЧ)? 2. Як проводиться корекція частотної характеристики в області НЧ (ВЧ)? 3. Що таке корекція за Бат

Класифікація, параметри та характеристики вибірних каскадів
  Вибірні підсилювачі розрізнюються за способом під’єднання частотно-вибірної системи (найпоширеніше резонансного контуру) до підсилювального елемента (ПЕ), а також за схемою включенн

Резонансні каскади з автотрансформаторним зв’язком
Резонансний підсилювач з автотрансформаторним під’єднанням контуру до ПЕ (рис. 9.3) використовується для вирівнювання загального коефіцієнта підсилення при перемиканні піддіапазонів.  

Резонансні каскади з трансформаторним зв’язком
Значна можливість впливу на характер зміни резонансного підсилення в діапазоні робочих частот властива резонансному підсилювачу з трансформаторним під’єднанням контуру до ПЕ (рис. 9.4). Ек

Резонансні каскади з комбінованим зв’язком
Резонансний підсилювач з комбінованим індуктивно-ємнісним зв’язком (див. рис. 9.4, додаткові елементи показані пунктиром) забезпечує практично лінійний характер зміни

Смугові каскади
  Основними параметрами смугового підсилювача (СП) є - резонансний коефіцієнт підсилення K0; - смуга пропускання ΔF, вибірність за сусі

Смугові каскади для трактів з рівномірним розподілом функції підсилення і вибірності
Особливістю СП, на відміну від підсилювача радіочастоти, є робота на фіксованій частоті. Резонансний коефіцієнт підсилення одноконтурного СП може бути визначений з виразу  

Вибірні підсилювачі з ФЗС на LC-контурах
У підсилювачах з зосередженою вибірністю необхідна селективність створюється в ФЗC. В якості останніх крім розглянутих п'єзоелектричних фільтри і фільтрів на поверхневих акустичних хвилях також зас

Запитання та завдання для самоконтролю
  1. Чому як нвавантаження резонансного підсилювача використовую паралельний коливальний, а не послідовний? 2. Виходячи з чого обирається максимальна і мінімальна ємності рез

Вимоги до каскадів кінцевого підсилення
  Особливості кінцевих підсилювальних каскадів полягають у тому, що в роботі підсилювального елемента використовується більша части­на його навантажувальної характеристики, яка вміщує

Основні режими роботи підсилювальних каскадів
  Розрізнюють декілька режимів роботи підсилювальних кінцевих елементів у підсилювальних каскадах. Режимом класу А називається режим, в якому вихідний струм тран­зистора тече

Однотактні каскади кінцевого підсилення
  Розрізнюють два типи схем підсилювачів потужності: однотактні і та двотактні У свою чергу, ці схеми поділяються на схеми з безпосереднім увімкненням навантаження та з проміжними при

Двотактні каскади кінцевого підсилння
  На рис. 10.5 а, б зображено трансформаторну та безтрансформаторну схеми двотактних підсилювачів.

Визначення нелінійних спотворень
  Оскільки основним режимом роботи каскаду кінцевого підсилен­ня є режим великих сигналів з використанням практично всієї наванта­жувальної характеристики до нелінійних областей, то з

Вибір транзисторів для каскаду кінцевога підсилення
  Транзистори для роботи в каскаді кінцевого підсилення вибирають з урахуванням енергетичних співвідношень. Якщо вважати, що струм транзистора одного плеча має вигляд напівсинусоїди (

Кінцеві каскади підсилення потужності, що працюють у режимі з ШІМ
  В останній час значне поширення знаходять підсилювальні пристрої з широтно–імпульсною модуляцією сигналу, що використовують режим D. Структурна схема підсилювача з широтно–імпульсно

Запитання та завдання для самоконтролю
  1. В чому полягає відмінність каскадів кінцевого підсилення в порівнянні з каскадами попереднього підсилення? 2. Чим викликане обмеження вихідної потужності підсилювача в р

Фільтри Саллена і Кі
На рис. 13.6 наведено приклад простого фільтра, відомого також як фільтр Саллена і Кі, по прізвищах його винахідників. У якості підсилювача застосовується ОП, що включений в режимі повторювача.

Елементів фільтрів
  n Фільтр Баттерворта Фільтр Бесселя Фільтр Чебишева (0,5 дБ) Фільтр Чебишева (2 дБ)

Запитання та завдання для самоконтролю
1. На який параметр АЧХ впливає порядок активного фільтра? 2. Які шляхи наближення АЧХ активного фільтра до ідеальної? 3. Які властивості має активний фільтр Баттерворта (Чебишева

ЛІТЕРАТУРА
  1. Рудик В. Д. Конспект лекцій до курсу "Аналогові електронні пристрої" / В. Д. Рудик. – Вінниця: ВПІ, 1991. – 93 с. 2. Рудик В. Д. Методичні вказівки до лаборато

ГЛОСАРІЙ
автономний – self-contained активний опір – active resistance биття –

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги