рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СМЕ (СМЕТ).

СМЕ (СМЕТ). - раздел История, Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів Тепловозы В Ссср Выпускались В Составе Одной, Двух, Реже— Трёх Или Четырёх Се...

Тепловозы в СССР выпускались в составе одной, двух, реже— трёх или четырёх секций. Мощность одной секции тепловоза может составлять до 6600 л.с. (американский EMD DDA40X), но у серийных тепловозов не превышает 4000л.с. (ТЭП70 и 2ТЭ121).

Для увеличения мощности тепловоза используется эксплуатация нескольких секций, объединённых по системе многих единиц (СМЕТ). При такой системе все секции управляются машинистом с одного поста. Как правило, возможна совместная работа только секций одной серии, однако в некоторых странах существуют стандарты такого соединения, поддерживаемые многими сериями тепловозов. В частности, такой стандарт существует в странах Северной Америки. В США используется и беспроводной интерфейс связи между двумя тепловозами, ведущими один поезд. Это делается в случае, когда второй тепловоз стоит в середине состава, что облегчает преодоление поездом сложных участков дороги с перевалистым профилем. В России в 1999—2002 годах также проходила испытание система Радио-СМЕТ, но широкого внедрения она не получила.

 

§1.9. История тепловозостроения

Мировое тепловозостроение.

Первый локомотив, использовавший двигатель внутреннего сгорания, был построен Готтлибом Даймлером. Он представлял собой двухосную узкоколейную мотрису с двухцилиндровым двигателем внутреннего сгорания . Первая известная демонстрация произошла 27 сентября 1887 года в Штутгарте на фольклорном фестивале. Фактически это был аттракцион, некоторые последующие модификации этого локомотива использовались в качестве трамвая.

Первый экспериментальный тепловоз для работы на магистральных линиях был разработан под руководством Рудольфа Дизеля в 1909 году, построен к сентябрю 1912 года, однако из-за возникших при испытаниях проблем, а также начавшейся Первой мировой войны его доработка так и не была закончена.

В июле 1913 года американская компания General Electric выпустила мотовоз, работавший на бензине, однако свернула производство подобного вида локомотивов через несколько лет, перейдя на производство дизельного тепловоза с целью удешевить локомотивное топливо. Специально для тепловозов General Electric разработала и построила свой дизель. Первые, коммерчески неуспешные образцы, оставшиеся опытными, выпускались General Electric в 1917 — 1918 гг.

Развитие дизельной тяги в Нью-Йорке получило толчок благодаря закону (Kaufman Act), принятому в 1923 году , который предполагал полное запрещение эксплуатации паровозов в пределах Нью-Йорка в течение последующих нескольких лет. Электрическая же тяга была экономически невыгодна на маршрутах с малым пассажиро- и грузопотоком.

В декабре 1923 года компаниями General Electric и Ingersoll Rand ( en ) был построен демонстрационный тепловоз , 14 августа 1924 года совершивший показательную поездку с 93 пустыми вагонами.

В 1925 году свой первый тепловоз выпускает компания ALCO ( en ). Тепловоз с электропередачей получил обозначение AGEIR, являющееся аббревиатурой трёх компаний-партнёров: электрооборудование для тепловоза производит General Electric, дизель— компания Ingersoll Rand.

Первые тепловозы предназначались для маневровых, а позже и для пассажирских работ. Первый тепловоз, предназначенный специально для вождения пассажирских поездов, появился в 1928 году в результате сотрудничества нескольких американо-канадских локомотивостроительных компаний.

После Второй мировой войны , когда экономически более эффективная дизельная тяга начинает активно вытеснять паровозную, лидером тепловозостроения в Северной Америке становится компания General Motors. General Motors и General Electric остаются флагманами североамериканского тепловозостроения и в новом, XXI веке.

 

Основные данные
Страна постройки Швеция
Заводы NOHAB
Годы постройки 1951-1965
Всего построено
Конструкционная скорость 105 или 140 км/час
Технические данные
Осевая формула 20—20, 0-30-0-0-30-0
Мощность дизеля 1950 л.с.
Тип передачи электрический
Эксплуатация
Страны Венгрия

 

В 1929—1930гг. немецкие тепловозы с электро- и гидропередачей поступили на железные дороги Японии, став первыми тепловозами в этой стране. Больше немецкие тепловозы никто нигде, в том числе в Германии, не видел.

В 1934 году было построен первый тепловоз с электропередачей в Китае компанией Dalian Works. В начале 1950-х Китай импортировал тепловозы ТЭ1 из Советского Союза и тепловозы M44 ( hu ) из Венгрии (получившие обозначение ND1 и проработавшие до 1984 года ). На базе венгерских M44 было налажено собственное производство маневровых тепловозов JS. А на базе советских ТЭ3 было организовано производство тепловозов, получивших обозначение DF. Также на рубеже 1960-х— 1970-x годов начали строиться тепловозы с гидропередачей. В дальнейшем Китай не только строил свои тепловозы, но и импортировал их из Германии (NY5, NY6, NY7), Румынии ( ND2 ), Франции (ND4 компании Alstom ) и США (422 локомотива ND5 — C36-7 производства General Electric ; в 2003 году 58 аналогичных тепловозов, ранее эксплуатировавшихся в США, были проданы в Эстонию).

Первый в Великобритании магистральный тепловоз British Rail Class D16/1 ( en ) был построен в 1947 году.

Первыми широко используемыми тепловозами в Индии стали маневровые WDS 1 производства General Electric , импортированные в 1944—1945 гг. Первыми магистральными тепловозами с электропередачей на железных дорогах Индии были WDM 1 производства ALCO, импортированные в 1957 — 1958 гг. из США. С 1967 года маневровые и магистральные тепловозы производит индийская компания Diesel Locomotive Works.

Первые тепловозы на железной дороге Индонезии появились в 1953 году, когда туда начали поставлять построенные в США локомотивы серии CC200.

 

 

 

В середине 1950-х годов производство тепловозов было организовано шведской компанией NOHAB ( en ). Основным импортным заказчиком стали Датские железные дороги. Двадцать тепловозов серии M61 ( hu ) были поставлены в Венгрию , впоследствии став причиной создания советского тепловоза М62.

Первыми тепловозами в Турции стали маневровые DH33100 производства немецкой фирмы Maschinenbau Kiel, импортированные в 1953 году . В самой Турции производством тепловозов занимается компания Tülomsaş.

В 1956 году тепловозы стали выпускаться венгерской компанией MAVAG , уже имевшей опыт работы с дизельными двигателями в процессе постройки дизель-поездов . Первыми тепловозами стали дизель-электрический М44 и дизель-гидравлический M31 ( hu ). Оба они были маневровыми. Первым магистральным тепловозом компании MAVAG стал M40 ( hu ).

В Греции тепловозы появились в 1961 году , когда туда из США поступили 10 тепловозов RS-8 производства ALCO. В дальнейшем Греция закупала как маневровые, так и магистральные тепловозы в США, Германии, Франции и Румынии.

 

Российские предшественники советских тепловозов.

Прародителями тепловозов Ломоносова и Гаккеля в России были:

- Так называемые нефтевозы— паровозы, в которых наряду с паровой машиной имелся и двигатель внутреннего сгорания , работавший на нефти.

- Проект тепловоза инженеров Ташкентской железной дороги , в котором проблема запуска дизеля решалась возможностью расцепления колёс с осью при помощи пневматической муфты. Муфта была практически испытана на паровозе.

- Проект, предусматривавший дополнение паровоза дизель-компрессором, нагнетавшим воздух в паровозные цилиндры. Основной проблемой стало уменьшение температуры воздуха при расширении, вызывавшее замерзание цилиндров во время работы.

- Проект первого в мире тепловоза с электропередачей и индивидуальными тяговыми электродвигателями , разработанный инженером Н.Г. Кузнецовым и полковником А.И. Одинцовым. 8 декабря 1905 года авторы сделали сообщение на заседании Русского технического общества, вызвавшее одобрительные отзывы. Однако проект реализован не был.

- Проект тепловоза непосредственного действия (то есть без передачи, когда валом двигателя является ось колёсной пары) на основе опытного двигателя известного учёного в области дизелестроения профессора В.И. Гриневецкого. На малых оборотах двигатель работал при помощи сжатого воздуха, резервуары которого предлагалось установить на тепловоз. В дальнейшем им же была предложена идея использования гидромуфты в качестве передачи.

- Проект тепловоза с механической передачей инженера Е.Е. Лонткевича, предложенный им в 1915 году . Предлагалось использовать механическую коробку передач с тремя передаточными числами. Для тихого хода первоначально предлагалось использовать дополнительную электрическую передачу, а в дальнейшем была выдвинута идея использования скользящего сцепления наподобие известной муфты инженера Корейво , применявшейся на колёсных пароходах . Проект не был реализован из-за технических сложностей с созданием зубчатых колёс и муфт передачи.

- Проект тепловоза с механическим генератором газа, разработанный студентом Московского высшего технического училища А.Н. Шелестом под руководством профессора В.И. Гриневецкого. В цилиндрах паровозного типа предлагалось применять не воздух, а продукты горения с впрыскиванием в них воды. Тепловоз должен был иметь генератор газа, заменяющий паровозный котёл, и машину, работающую по принципу поршневого паровозного двигателя.

 

Тепловозы в СССР.

В 1905 г. инженер Н.Г. Кузнецов и полковник А.Н. Одинцов разработали проект автономного электровоза (тепловоза с электрической передачей). Это был первый в мире проект современного тепловоза.

В 1909 г. инженер Ю.В. Ломоносов, работавший начальником паровозной службы на Ташкентской ж/д., создал проект тепловоза непосредственного действия с групповым приводом колес.

В 1912 г. профессор МВТУ В.И. Гринивецкий разработал требования к транспортному ДВС, который был построен на Путиловском заводе в г. Петербурге.

В 1913 г. инженер А.И. Липец совместно с Ю.В. Ломоносовым разработал проект тепловоза, на постройку которого правительство России выделило средства. Однако начало Первой мировой войны сорвало осуществление данного проекта. Первые тепловозы были построены при советской власти и процесс их создания можно разделить на три этапа.

Первый этап (1924–1937 гг.).Советом труда и обороны советской России под руководством В.И. Ленина 4 января 1922 г. было принято решение о постройке тепловозов. Один строится в Петрограде под руководством проф. Я.М. Гаккеля, другой – под руководством проф. Ю.В. Ломоносова в Германии, в счет поставки в нашу страну 1200 паровозов. В ноябре 1924 г. вышли на испытания два магистральных тепловоза: ЮЭ001 (конструктор Ломоносов) и ЮЭ002 (конструктор Гаккель). Позже они были переименованы: первый стал называться ЭЭЛ2, а второй – ЩЭЛ1 (рис. 1.74, 1.75).

Тепловоз ЭЭЛ имел следующие показатели: тип – грузовой, эффективная мощность Nе = 1000 л.с. (800 кВт), VK = 50 км/ч, касательная сила тяги FК = 152 кН, 2П = 177 кН, передача постоянно-постоянного тока, колесная формула 1–50–1, запуск дизеля воздушный.

 

 

 

 

Тепловоз ЩЭЛ имел следующие показатели: тип – грузовой, мощность Nе = 1000 л.с. (800 кВт), VK = 75 км/ч, FК = 220 Кн, 2П = 160 кН, передача постоянно-постоянного тока, колесная формула 1 + 30 – 40 – 30 + 1, запуск дизеля электрический.

За рубежом первый тепловоз был создан в Германии в 1912 г. на заводе Зульцера. Он имел два ДВС: один тяговый, второй – вспомогательный. Вспомогательный дизель приводил в действие компрессор, который направлял воздух в цилиндры тягового ДВС. Тяговый дизель начинал запускаться и одновременно, через непосредственную передачу, приводил в действие колесные пары. Мощность ДВС составляла1200 л.с. Данный тепловоз не имел практического применения, так как наблюдались большие затруднения в запуске ДВС и поддержании температуры в рабочих пределах (тепловоз не имел охлаждающего устройства).

Испытания советских тепловозов показали их полную пригодность для работы на железных дорогах и значительную экономию средств по сравнению с паровозами. Тепловоз ЭЭЛ2 проработал 30 лет (его пробег составил около 1 млн. км и был списан в 1954 г.). Тепловоз ЩЭЛ1проработал до 1927 г. (пробег составил около 60 тыс. км) и был отставлен на модернизацию. В настоящее время он находится на почетной стоянке в депо Ховрино Московской ж.д.

В 20-х гг. ХХ в. строятся еще несколько тепловозов: ЭМХ-3, ОЭЛ, ЭЭЛ-5, ЭЭЛ-8. В 1930 г. принимается решение о строительстве серийных тепловозов на Коломенском машиностроительном заводе. В 1931 г. выходит первый серийный тепловоз ЭЭЛ мощностью 1050 л.с. В 1934 г. строится первый двухсекционный тепловоз ВМ (Вячеслав Молотов, который был в то время Председателем Совета народных комиссаров), мощностью 2100 л.с. Авторами этих тепловозов были инженеры Б.С. Поздняков, А.И. Козявкин, А.А. Кирнарский. Все построенные тепловозы были сосредоточены в депо Ашхабад, где эксплуатация паровозов была затруднена из-за отсутствия воды. В 1937 г. строительство тепловозов было прекращено. Причиной этому послужило строительство паровоза СОК с конденсацией пара, что позволяло их использовать в маловодных районах СССР. За 1930 по 1937 гг. было создано 34 тепловоза, которые успешно выполняли как поездную, так и маневровую работу на железных дорогах нашей страны.

Второй этап (1945–1956 гг.). В 1945 г. из США поступили тепловозы серии ДА фирмы Алко (120 шт., которые были приписаны к депо Ашхабад) и ДБ фирмы Балдвин (80 шт., которые были приписаны к депо Гудермес).

В 1946 г. на Харьковском заводе создается тепловоз ТЭ1 мощностью 1000 л.с.

В 1948 г. строится двухсекционный тепловоз ТЭ2 мощностью 2000 л.с. Конструктор этого тепловоза инженер А.А. Кирнарский был удостоен Сталинской премии. За 1946–1950 гг. полигон тепловозной тяги увеличился более, чем в двое и составил 3,1 тыс. км (3 % от общей длины).

В 1953 г. из ворот Харьковского завода тяжелого машиностроения выходит новый тепловоз ТЭ3 мощностью 4000 л.с. в двух секциях. Он стал первым тепловозом второго поколения. В 1955 г. переведено на тепловозную тягу 6,5 тыс. км железнодорожных путей.

Третий этап (с 1956 г по настоящее время). В 1956 г. ХХ съезд КПСС принимает программу коренной реконструкции железнодорожного транспорта, в том числе полной замены паровозов тепловозами и электровозами. За предстоящую пятилетку планировалось построить 2250 шт. магистральных тепловозов. Для чего на тепловозостроение были переведены Коломенский, Луганский и Харьковский заводы. Дизели для них строились на Харьковском и Коломенском заводах, электрооборудование – на Харьковском заводе «Электротяжмаш».

В 1958 г. создается на Харьковском заводе тепловоз ТЭ10 мощностью 3000лс.

В 1960 г. строится пассажирский тепловоз ТЭП10 мощностью 3000 л.с. с конструкционной скоростью 140 км/ч.

В этом же году для работы на станциях выпускается маневровый тепловоз ТЭМ2.

В 1961 г. на Луганском тепловозостроительном заводе строится двухсекционный тепловоз 2ТЭ10Л мощностью 6000 л.с. В этом же году Коломенский машиностроительный завод выпускает пассажирский тепловоз ТЭП60 мощностью 3000 л.с. с конструкционной скоростью 160 км/ч.

С 1956 по 1970 гг. было построено 13500 секций магистральных тепловозов и 5840 электровозов. С заменой паровозов тепловозами и электровозами затраты на перевозки сократились на 35–40 % и повысилась производительность труда в 2,5 раза. За это время участковая скорость возросла в 2 раза, средний вес поезда увеличился на 1000 т и составил 2757 т. Внедрение тепловозов окупалось за 1–3 года. Переход на новые виды тяги позволил только за восьмую пятилетку (1966–1970 гг.) сократить эксплуатационные расходы на 5 млрд. руб. и сберечь 150 млн. тонн условного топлива. В 1970 г. тепловозы уже обслуживали 76,2 тыс. км (62,2 % эксплуатационной длины железных дорог СССР), электровозы – 33,9 тыс. км (25 %). В том числе на тепловозную тягу была переведена и ДВЖД, за исключением ее южной части, которую обслуживали электровозы.

С 1970 по 1992 гг. были созданы тепловозы новых серий 2ТЭ10В, 2ТЭ116, 3ТЭ10М, 4ТЭ10С, ТЭП70, ТЭМ7. Для Сахалинской ж.д. на Людиновском локомотивостроительном заводе были построены тепловозы с гидропередачей серии ТГ16 мощностью 3200 л.с. в двух секциях.

 

§1.10. Магистральные тепловозы.

Основными магистральными тепловозами, выполняющими значительную долю перевозочной работы, являются грузовые тепловозы ТЭЗ, 2М62, 2ТЭ10Л, ЗТЭ10М, 2ТЭ10М (2ТЭ10В), 2ТЭ116 и пассажирские ТЭП10, ТЭП60 и ТЭП70. Тепловозы ТЭЗ, в недавнем прошлом выполнявшие до 40 % перевозочной работы, сняты с производства, но продолжают еще работать. После замены выработавших свой ресурс дизелей они могут с успехом обслуживать малодеятельные участки. Часть их передана промышленности для работы на подъездных путях, а часть модернизирована в трехсекционный локомотив ЗТЭЗ.

Тепловоз 2ТЭ10Л также был снят с производства и взамен его выпускался тепловоз 2ТЭ10В с усовершенствованной экипажной частью. Затем на базе тепловоза 2ТЭ10В был построен модернизированный его вариант — 2ТЭ10М, являющийся основной модификацией тепловозов этого типа. Обе модификации по механическому оборудованию практически не отличаются друг от друга. Имеются некоторые отличия по электрической схеме, по системе автоматического регулирования температуры теплоносителей, по объединенному регулятору частоты вращения и мощности и некоторые другие.

Тепловоз 2ТЭ116 имеет одинаковую с тепловозами 2ТЭ10В и 2ТЭ10М экипажную часть (тележки, опорно-возвращающие устройства, кузов). Но в отличие от тепловозов типа ТЭ10 имеет четырехтактный У-образный дизель типа Д49, электрическую передачу переменно-постоянного тока, электрический привод вспомогательных агрегатов и некоторые другие особенности.

Тепловоз 2М62 по экипажной части аналогичен тепловозу ТЭЗ, имеет одинаковую с ним мощность и предназначен для вождения грузовых и пассажирских поездов на участках с относительно легким строением пути. В качестве силовой установки тепловоз имеет V-образный двухтактный дизель марки 14Д40. Передача мощности — электрическая на постоянном токе. Вода охлаждается в водовоздушных радиаторах, а масло — в водомасляных теплообменниках Тепловоз имеет четыре кабины. В смежных нерабочих кабинах, объединенных переходным тамбуром, пульты управления и другое оборудование сняты.

Тепловоз ТЭП60, являвшийся основным пассажирским локомотивом, уступает место более мощному тепловозу ТЭП70, способному водить пассажирские поезда большей массы и с большей скоростью. Тепловоз ТЭП70 имеет дизель типа Д49, передачу переменно-постоянного тока. Экипажная часть первых семи тепловозов аналогична экипажной части ТЭП60, а остальных — унифицирована с экипажной частью тепловоза ТЭП75.

Тепловозы ТЭ10, ТЭП10, 2ТЭ10Л, 2ТЭ10М, ЗТЭ10М, 2ТЭ10В в качестве силовой установки имеют дизель 10Д100, выполненный на базе 2Д100 и форсированный за счет двухступенчатого турбонаддува и охлаждения наддувочного воздуха до 2200 кВт, а также электрическую передачу постоянного тока. Дизели типа Д100 непрерывно совершенствовались. Усилен блок цилиндров дизеля, коленчатые валы стали изготавливать из высокопрочного чугуна взамен серого легированного, увеличен диаметр шейки вала под антивибратор, введена упрочняющая накатка галтелей, эластичная муфта вертикальной передачи заменена торсионным валом, применены бесшпилечные поршни и бесканавочные вкладыши подшипников коленчатого вала, осуществлен параллельный подвод масла к коленчатым валам. На дизелях 10Д100 внедрен объединенный регулятор частоты вращения и мощности дизеля, усовершенствованы системы очистки воздуха, топлива и масла.

Тепловоз 2ТЭ10М(В). После усовершенствования тепловоза 2ТЭ10Л путем установки бесчелюстных тележек и некоторых новых элементов главной рамы и кабины локомотив получил обозначение вначале 2ТЭ10В, а затем 2ТЭ10М (рис. 1.76). В средней части тепловоза на общей раме смонтированы дизель 7 и генератор 6 постоянного тока. Нижний коленчатый вал дизеля соединен с генератором полужесткой муфтой.

Пуск дизеля электрический — от аккумуляторной батареи 32, расположенной в четырех ящиках- под полом по обеим сторонам дизеля. Ток от аккумуляторной батареи поступает в пусковую обмотку, расположенную на главных полюсах тягового генератора, который начинает работать в режиме электродвигателя. При достижении определенной частоты вращения коленчатого вала в цилиндрах происходит вспышка топлива, и дизель начинает работать. В это время поступление тока в пусковую обмотку генератора

 

 

 

I — пульт управления в кабине машиниста; 2 — вентилятор кузова; 3 — вентилятор охлаждения тягового генератора; 4 — нагнетатель второй ступени; 5 —воздухоохладитель; 6 — тяговый генератор; 7 — дизель; 8 — турбокомпрессор; 9 — .резервуар противопожарной установки; 10 — бак водяной; // — колесо вентиляторное; 12 – секции охлаждающие; 13 — гидропривод вентилятора; 14 — тяговый электродвигатель; 15 — рама тепловоза; 16 — бак топливный; 17 — тележка; 18 — аппаратные камеры; 19, 21 — каналы забора воздуха для охлаждения тяговых электродвигателей и генератора; 20 — вентиляторы охлаждения электродвигателей передней и задней тележек; 22 — маслопрокачивающий агрегат; 23 —воздухоочистители; 24 — редуктор распределительный задний; 25 — фильтр грубой очистки масла; 26 — синхронный подвозбудитель; 27 — теплообменник; 28 — редуктор привода синхронного подвозбудителя; 29 — гидропривод вентилятора; 30 — фильтр тонкой очистки масла; 31 — топливоподогреватель; 32 — батарея аккумуляторная; 33 — топливоподкачивающий насос; 44 — канал выпускной охлаждения тягового генератора; 35 — редуктор распределительный передний; 36' — компрессор; 37 — двухмашинный агрегат.

 

автоматически прекращается и он переходит на режим тягового генератора. Электрическая энергия, вырабатываемая тяговым генератором, по кабелям поступает к тяговым электродвигателям 14. Вращение якоря передается через тяговую зубчатую передачу колесной паре тепловоза.

Воздух из атмосферы через два (по одному с каждой стороны дизеля) воздухоочистителя (фильтры непрерывного действия) поступает в два автономных, параллельно работающих, турбокомпрессора 8 типа ТК234Н-04С (первая ступень сжатия), где давление воздуха повышается до 0,17 МПа. Из турбокомпрессоров сжатый воздух идет в нагнетатель 4 центробежного типа (вторая ступень сжатия), где он дополнительно сжимается до давления 0,22 МПа и при этом температура его повышается примерно до 130 °С. Для снижения температуры воздух из нагнетателя идет в два параллельно работающих водяных воздухоохладителя 5, расположенных с обеих сторон дизеля. Воздух охлаждается до 65 °С, затем направляется в воздушный коллектор, а дальше в цилиндры дизеля.

Турбокомпрессоры приводятся в действие энергией отработавших газов, а нагнетатель второй ступени приводится в действие от верхнего вала через механический редуктор.

Для питания тормозной сети и электропневматических аппаратов сжатым воздухом на тепловозе установлен двухступенчатый воздушный компрессор 36 типа КТ7, приводимый в действие от вала тягового генератора через передний распределительный редуктор 35 и пластинчатую муфту. От этого редуктора через карданные валы и промежуточную опору приводится в действие двухмашинный агрегат 37, а через гидромуфту, смонтированную в корпусе переднего редуктора 35,— вентилятор 20 охлаждения тяговых электродвигателей передней тележки.

Задний распределительным одноступенчатый редуктор 24 приводится в действие от вала дизеля через пластинчатую муфту. От редуктора 24 вращение передается вентилятору 20 охлаждения тяговых электродвигателей задней тележки, масляному насосу центробежного фильтра, а через карданные валы гидроприводу 13 вентиляторного колеса 11. Редуктор 28 через сдвоенную упругую муфту передает вращение валу синхронного подвозбу-дителя 26.

Для циркуляции воды в системах охлаждения на переднем торце дизеля смонтированы два водяных насоса, приводимых в действие от вала дизеля. Водяной бак 10 разделен перегородкой на две части — одна вместимостью 0,106 м3, другая — 0,230 м3. Бак служит запасным резервуаром, из которого пополняется водяная система по мере утечки воды во время работы дизеля.

Смазывание трущихся деталей дизеля принудительное от шестеренного масляного насоса. При этом масло для смазывания трущихся деталей дизеля и охлаждения поршней циркулирует между дизелем и водомасляным теплообменником 27. Для прокачки масла через дизель перед его пуском на раме тепловоза около дизеля установлен маслопрокачивающий агрегат 22. Из картеров распределительных редукторов масло откачивается насосами в поддизельную раму. Масло, поступающее в дизель, очищается фильтрами трех типов: грубой очистки 25, тонкой очистки 30 и центробежным. Для хранения масла на тепловозе нет специальных баков, оно находится в масляной системе и в картере дизеля. Во время остановки дизеля часть масла стекает в нижнюю часть картера, а во время работы уровень масла в картере должен быть не ниже минимальной отметки на масломерном щупе для обеспечения работы масляного насоса.

Топливо к плунжерным топливным насосам подается из топливного бака 16 топливоподкачивающим насосом 33 шестеренного типа. Перед поступлением топлива в плунжерный топливный насос оно очищается фильтрами грубой и тонкой очистки. В зимнее время топливо подогревается в топливоподогревателе 31.

Частота вращения коленчатого вала дизеля и установленная мощность поддерживаются объединенным регулятором, который расположен с левой передней стороны дизеля и приводится в действие от нижнего коленчатого вала через привод регулятора.

В задней части кузова тепловоза расположено охлаждающее устройство, состоящее из водяных секций 12 и вентилятора 11. Температуру воды и масла в системах охлаждения в зависимости от режима работы дизеля и температуры окружающего воздуха регулируют за счет автоматического бесступенчатого изменения частоты вращения вентиляторного колеса, обеспечиваемого гидромуфтой переменного наполнения гидропривода 13, а также открытием и закрытием жалюзи секций радиаторов. В зимнее время для облегчения регулировки на жалюзи навешивают утеплительные чехлы с механическим приводом.

В головной (передней) части кузова расположена кабина с пультом управления 1. В кабине установлены приборы для контроля за работой агрегатов, радиостанция ЖР-ЗМ, автоматическая локомотивная сигнализация (сокращенно АЛСНВ-1) с автостопом непрерывного действия, локомотивный светофор, скоростемер СЛ-2М. На пульте управления каждой секции тепловоза смонтированы также некоторые приборы для контроля за работой агрегатов, расположенных на второй секции. За задней стенкой кабины справа и слева расположены аппаратные (высоковольтные) камеры 18, в которых размещены электрические аппараты.

Секции тепловоза соединены между собой автоматической серийной сцепкой СА-3. Для перехода из одной секции в другую служит переходная площадка — суфле вагонного типа. При необходимости каждая секция может работать как самостоятельный локомотив.

Каждая секция тепловоза оборудована автоматической пожарной сигнализацией, противопожарной воздухопенной установкой, состоящей из резервуара 9 вместимостью 0,290 м3 с огнегасящей жидкостью ПО-1 ГОСТ 6948—81, трубопровода с вентилями и кранами. Вентиляция дизельного помещения производится двумя вентиля торами 2, установленными на крыше тепловоза.

На секции тепловоза имеется четыре бункера песочниц, по два на каждую тележку. Бункера расположены в переднем и заднем торцах кузова с левой и с правой его стороны. Кузов, рама тепловоза и все оборудование, расположенное на них, опирается на две трехосные бесчелюстные тележки с эластичной тяговой передачей и нагрузкой от колесной пары на рельсы 230 кН. На тележках все тяговые электродвигатели расположены подвесками (носиками) к середине тепловоза, что обеспечило повышение силы тяги примерно на 10%. Нагрузка от оборудования, установленного на раме тепловоза, на каждую тележку передается через четыре резинороликовые опоры, которые одновременно являются возвращающими устройствами, обеспечивающими спокойное и плавное движение тепловоза. В середине шкворневой балки каждой тележки расположено шкворневое устройство, обеспечивающее возможность боковых перемещений тележки относительно кузова. Шкворень воспринимает только горизонтальные усилия от силы тяги и торможения, а также боковые силы от колесных пар и служит центром поворота тележки относительно кузова.

Управление автоматическими тормозами поезда производится краном машиниста. Кран вспомогательного тормоза применяется для управления прямодействующим тормозом тепловоза. На тепловозе предусмотрено и ручное торможение. При ручном торможении колодки воздействуют на бандажи колес двух задних осей передней и задней тележек. Для ввода тепловоза в депо при неработающем дизеле предусмотрено устройство для передвижения тепловоза при помощи тяговых электродвигателей на пониженном напряжении. Для этого у второго и третьего электродвигателей выведены провода к штепсельным разъемам, вмонтированным в боковую стенку кузова тепловоза у правой аппаратной камеры. При вводе тепловоза в депо реверсор устанавливают в требуемое положение — «вперед» или «назад», дизели глушат, провода от постороннего источника присоединяют к штепсельным разъемам. При передвижении тепловоза напряжение не должно превышать 50 В, а сила тока 600 А.

Тепловоз 2ТЭ116. В конструкции этого тепловоза нашли отражение прогрессивные направления современного тепловозостроения. На нем установлены экономичные четырехтактные дизели, применена электрическая передача переменно-постоянного тока с тиристорным регулированием возбуждения генератора, широко внедрен электрический привод вспомогательных агрегатов, применена бесчелюстная тележка с минимальным числом изнашиваемых элементов и упругим приводом колесных пар. Внедрен на тепловозе и ряд других принципиально новых конструктивных решений. Заводы постоянно ведут работу по совершенствованию тепловозов.

 

Тепловоз 2ТЭ116 (рис. 1.77) по конструкции экипажной части, рамы тепловоза, кабины, элементами кузова унифицирован с тепловозом 2ТЭ10В. В средней части рамы тепловоза на общей поддизельной раме смонтирована дизель-генераторная установка с 16-цилиндровым четырехтактным У-образным дизелем 1А-5Д49 и синхронным генератором ГС-501А. Дизель 29 мощностью 2200 кВт имеет газотурбинный наддув и охлаждение наддувочного воздуха. Синхронный генератор 15 представляет собой 12-полюс-ную электрическую машину с зависимым возбуждением и с обмоткой статора в виде двух трехфазных звезд, сдвинутых на 30° эл. относительно друг друга. Возбуждение генератора производится однофазным возбудителем 21 переменного тока ВС-650В с частотой 220 Гц, имеющим привод от заднего распределительного редуктора. Ток возбуждения регулируется тиристорным блоком выпрямителей 30, выполненным в виде управляемого выпрямительного моста, в два плеча которого включены тиристоры. При изменении угла открытия тиристоров изменяется ток возбуждения тягового генератора. В схеме предусмотрен аварийный режим возбуждения.

Для пуска дизеля применен стартер-генератор типа СТГ-7, который в момент пуска, получая питание от аккумуляторной батареи, работает в режиме электродвигателя постоянного тока с последовательным возбуждением и приводит во вращение вал дизеля через задний редуктор. После пуска дизеля стартер-генератор работает в генераторном режиме и питает цепи управления, освещения, электродвигатель 27 ЭКТ-5 тормозного компрессора 26 типа КТ7 и через диод заряда заряжает аккумуляторную батарею 12. Кислотная аккумуляторная батарея 48ТН-450 емкостью при 10-часовом режиме разряда 450 А-ч, установлена в нишах ферм главной рамы тепловоза по обеим сторонам топливного бака 13.

Воздухоснабжение дизеля обеспечивается газотурбинным компрессором, установленным на газовом тракте дизеля. Воздух поступает через двух: ступенчатые воздухоочистители 23 непрерывного действия с периодически проворачивающимися в масляной ванне кассетами из металлических сеток (1-я ступень) и неподвижными кассетами из промасленных металлических сеток (2-я ступень), обеспечивающими степень очистки воздуха 98%. При неблагоприятных метеорологических условиях воздух забирают из дизельного помещения.

Охлаждение воды дизеля и воды, охлаждающей воздух в воздухоохладителе и масла в теплообменнике, осуществляется охлаждающим устройством, расположенным в задней части секции тепловоза и состоящим из 38 секций радиаторов длиной 1356 мм и четырех мотор-вентиляторов. Масло охлаждается в теплообменнике 22. Температура воды и масла может поддерживаться как автоматически, так и вручную включением в определенной комбинации мотор-вентиляторов и открытием и закрытием боковых и верхних жалюзи.

 

 

 

1, 9 — мотор-вентиля горы для охлаждения выпрямительной установки и холодильной камеры; 2 — выпрямительная установка; 3 — вентилятор кузова; 4 — канал забора воздуха для охлаждения тягового генератора; 5 — глушитель; 6 — компенсатор глушителя; 7 — расширительный водяной бак; 8 — канал для набора воздуха; 10 переходный тамбур; 11 — колесно-моторный блок; 12 — аккумуляторная батарея; 13 — бак для топлива; 14 — маслопрокачивающий агрегат; 15 — генератор: 16 — тележка; 17 — главный резервуар; 16 — бункера для песка; 19 — кабина машиниста; 20 — аппаратные камеры; 21 — возбу дитель; 22 — охладитель масла для дизеля; 23 — воздухоочиститель дизеля; 24 — фильтр тонкой очистки масла; 25 — электродвигатели вентиляторов охлаждения тяговых электродвигателей; 26 — тормозной компрессор; 27 — электродвигатель привода компрессора; 28 — коллекторы охлаждающих секций; 29 — дизель; 30 — блок выпрямителей управления возбуждением обмоток генератора.

Тяговые двигатели ЭД118А или ЭД118Б подключены к установке шестью параллельными цепями. Необходимый диапазон использования мощности дизеля по скорости тепловоза осуществляется за счет двух ступеней ослабления возбуждения 36 и 60 %.

Охлаждение генератора, выпрямительной установки и тяговых электродвигателей производится мотор-вентиляторами 1 и 25, забирающими воздух через проемы на боковых наклонных поверхностях крыши и кузова в сетчатые промасленные фильтры-кассеты, установленные в коробках крыши. Воздух по каналам 8 поступает в вентиляторы и далее подводится к электрическим машинам. Степень очистки воздуха — 80%. При неблагоприятных метеорологических условиях можно перейти на забор воздуха из дизельного помещения, открыв специальные люки в крышах.

Машинное помещение от кабины отделено проставкой (тамбуром), в котором' размещены три аппаратные (высоковольтные) камеры 20 с электрической аппаратурой. Наличие тамбура снижает уровень шума в кабине. Кабина машиниста обеспечивает хорошие условия для работы локомотивных бригад в соответствии с требованиями промышленной санитарии и эргономики. Песочная система тепловоза наряду с обычной системой подвода песка под колеса каждой тележки для экономии песка позволяет подавать его только под переднюю колесную пару.

Тепловоз оборудован схемой автоматической пожарной сигнализации, а также схемой аварийной остановки тепловоза, т. е. после нажатия кнопки «Аварийный стоп» локомотивная бригада может покинуть кабину — автоматически произойдет остановка дизеля, экстренное торможение, подача песка под колесные пары и подача звукового сигнала тифоном. В электрической схеме тепловоза широко использована полупроводниковая техника в блочном и индивидуальном исполнении, за счет чего уменьшилось количество реле и повысилась надежность работы схемы.

Результаты многолетних наблюдений в эксплуатации тепловозов 2ТЭ116 и экспериментальные исследования отдельных конструктивных и технологических решений нашли свое отражение в выпускаемом с 1982 г. модернизированном варианте тепловоза 2ТЭ116А. На этом тепловозе, наряду с комплексным внедрением усовершенствований оборудования, воплощены принципиально новые конструктивные решения. Взамен генератора ГС501, возбудителя и выпрямительной установки применен единый тяговый агрегат А-714. Сокращено число асинхронных двигателей для привода вспомогательных машин. Улучшены условия работы этих двигателей за счет стабилизации напряжения их питания. На тепловозе применены: несущий кузов, унифицированный с кузовом тепловоза ТЭ121, с улучшенной компоновкой оборудования; централизованное воздухоснабжение для охлаждения электрических машин; более совершенные комплексные устройства автоматики. Дизель 1А-5Д49 установлен более надежный (второе исполнение). При этом чугунный вал заменен на стальной с 16 противовесами, увеличена толщина коренных вкладышей с 4,91 до 7,34 мм, а также их ширина с 80 до 90 мм. Подвески вместо зубчатого стыка имеют плоский стык с развитой поверхностью соединения с остовом дизеля. Крепятся они к остову дополнительно четырьмя горизонтальными болтами.

 

Тепловозы ТЭП60 и 2ТЭП60. По своим ходовым качествам, по условиям, созданным для обслуживающего персонала (локомотивных бригад) и, наконец, по внешнему виду эти тепловозы (рис. 1.78, 1.79) вполне отвечают своему назначению — скоростные локомотивы пассажирского движения.

В кузове несущей конструкции, объединяющей в единую пространственную систему главную раму, боковые фермы (стенки), крышу и кабины, расположена дизель-генераторная установка, состоящая из дизеля 11Д45 и тягового генератора постоянного тока ГП311В.

Дизель 8 мощностью 2200 кВт, двухтактный, 16-цилиндровый с V-об-

разным расположением цилиндров, с двухступенчатым наддувом и промежуточным охлаждением наддувочного воздуха и тяговый генератор 47 ГП311В с независимым возбуждением и принудительным охлаждением расположены на общей раме, которая установлена на раме тепловоза на резиновых амортизаторах.

 

 

 

1 — ящик для шланга и генератора противопожарной установки; 2 — резервуар противопожарной установки; 3 — гидромотор; 4 — вентилятор; 5 — водяной бак; 6 — фильтр — бак гидропривода; 7 — выпускные патрубки; 8 — дизель; 9 — регулятор дизеля; 10 — центробежный масляный фильтр; — вентилятор тягового генератора; 12 — вентилятор тяговых электродвигателей передней тележки; 13 — тормозной компрессор; 14 — вентилятор дизельного помещения; 15 — холодильник для пищи; 16 — газовый огнетушитель; 17 — прожектор; 18 — главные опоры кузова; 19 — крепежные лапы электродвигателя; 20 — тяговый электродвигатель; 21 — крепежный кронштейн; 22 — топливный бак; 23 — буксовый балансир; 24 — пружины; 25 — рессорные балансиры; 26 — боковые опоры кузова; 27 — букса; 28 — тормозной цилиндр; 29 — фильтры тонкой очистки масла дизеля; 30 — фильтр грубой очистки масла дизеля; 31 — жалюзи; 32 — фильтр тонкой очистки масла гидропривода; 33 — вентилятор тяговых электродвигателей задней тележки; 34 — топливоподогреватель; 35 — фильтр грубой очистки топлива; 36 — фильтр тонкой очистки топлива; 37 — топливомер; 3*— топливоподкачивающий иасос; 39 — стол помощника машиниста; 40 — ручной тормоз: 41 — пульт управления; 42 — аппаратная камера; 43 — санузел; 44 — двухмашинный агрегат; 45 — подвозбудитель; 46 — раздаточный редуктор 47 — тяговый генератор; 48 — гидронасосы; 49 — ручной огнетушитель; 50 — водомасляный теплообменник; 51 — главные воздушные резервуары; 52 — масло прокачивающий насос; 53 — радиаторные секции.

 

Резиновые амортизаторы уменьшают передачу звуковых колебаний и вибрации от неуравновешенных масс дизеля на раму тепловоза, улучшая тем самым условия работы локомотивных бригад.

Со стороны генератора от вала дизеля через раздаточный редуктор 46 приводятся во вращение валы двухмашинного агрегата 44 А706А, состоящего из вспомогательного генератора и возбудителя тягового генератора, подвозбудителя 45 ГС500, вентилятора // охлаждения генератора и вентилятора 12 охлаждения тяговых электродвигателей передней тележки. Все эти агрегаты смонтированы на остове тягового генератора. От вала генератора приводится в действие тормозной компрессор 13 КТ7.

Со стороны турбокомпрессоров от вала дизеля посредством шлицевого валика приводится во вращение двухступенчатый редуктор механического воздухонагнетателя. Ведущая упругая шестерня этого редуктора передает вращение валам двух водяных и масляного насосов. От ступицы ведущей упругой шестерни с помощью карданного вала приводится в действие редуктор гидронасосов 48 гидрообъемного привода вентиляторов охлаждающего устройства. Вал вентилятора 33 охлаждения тяговых электродвигателей задней тележки получает вращение от двухступенчатого редуктора воздухонагнетателя через конический редуктор. Воздух, идущий на охлаждение электрических машин, забирается вентиляторами снаружи кузова. В случае необходимости (в снежную пургу, при пылевых бурях) предусмотрена возможность забора воздуха из кузова.

Воздух, поступающий в цилиндры дизеля, на своем пути проходит масло-пленочные фильтры, расположенные непосредственно над турбокомпрессорами, полости нагнетателей первой ступени (турбокомпрессоров), водяной охладитель и нагнетатель второй ступени, где воздух дополнительно сжимается, входя в продувочные окна блока под давлением 0,21 МПа.

Охлаждающее устройство расположено в двух шахтах, каждая из которых имеет по одному вентилятору 4, приводимому во вращение гидромотором 3. Система охлаждения—двух контурная. В первом контуре охлаждается вода дизеля, во втором — вода, охлаждающая масло в водомасляном теплообменнике 50 и воздух в воздушном охладителе. Секции радиаторов охлаждающего устройства расположены в шахтах в один ряд с правой и левой стороны. Вся разветвленная сеть трубопроводов водяной и масляной систем тепловоза расположена под полами кузова.

Аппаратная камера 42 расположена со стороны передней кабины. Стенка камеры, обращенная к кабине, имеет двустворчатые остекленные двери, заблокированные специальным выключателем. При открытии двери в аппаратную камеру снимается нагрузка с тягового генератора.

Возле передней кабины на тепловозах до № 0502 устанавливался котел-подогреватель для прогрева систем дизеля перед его пуском и на стоянках в зимнее время. Между кабинами и машинным отделением предусмотрены тамбуры с дверями для входа в дизельное помещение с обеих сторон тепловоза. Эти тамбуры являются одновременно воздушными буферами, поглощающими шум от дизеля.

Кабины имеют хорошую теплоизоляцию. Окна и двери герметичны, имеют двойные стекла. Пульт машиниста имеет наклонное табло, на котором размещены контрольно-измерительные приборы. Контроллер, скоростемер, радиостанция находятся слева, а тормозные краны, управление песочницей, тифонами справа. Под столом помощника машиниста установлены два водяных калорифера с принудительной подачей воздуха.

Кузов тепловоза установлен на две трехосные сбалансированные бесчелюстные тележки. На каждую тележку кузов опирается через две главные маятниковые опоры с резиновыми конусами по концам и четыре боковые пружинные опоры. Между кузовом и тележками предусмотрена упругая связь посредством пружинных возвращающих аппаратов. Рессорное подвешивание буксовой ступени включает цилиндрические пружины и листовые рессоры с балансирами. Над пружинами и рессорами установлены резиновые амортизаторы.

Тяговые электродвигатели 20 имеют опорно-рамное подвешивание. Вращение от шестерни тягового двигателя передается колесной паре через полый вал с зубчатым венцом и две эластичные муфты обоим колесам каждой колесной пары. Все шесть тяговых двигателей имеют параллельное соединение с генератором.

Тепловоз оборудован электропневматическим тормозом, радиостанцией, противопожарной установкой с автоматической системой извещения и автоматической локомотивной сигнализацией с автостопом.

У тепловозов 2ТЭП60 сохранены обе кабины каждой секции. Задние кабины секций имеют дверные проемы и откидные площадки с гибким ограждением вагонного типа.

 

Тепловоз ТЭП70 (тепловоз с электрической передачей, пассажирский, разработан в 1970-х годах) — пассажирский тепловоз, производившийся в СССР и производящийся в модифицированном виде в России на Коломенском заводе с 1973 года.

 

 

 

 

 

 

 

Основные данные
Страна постройки СССР, Россия
Завод Коломенский завод
Годы постройки ТЭП70 (1973 - 2006), ТЭП70БС (2002, 2006-н.в.), ТЭП70У (2006-2007), 2ТЭ70 (2004, 2007-2010)
Всего построено 795, в том числе: ТЭП70 – 576, ТЭП70БС — 191 , 2ТЭ70 — 12, ТЭП70У — 26
Ширина колеи 1520мм
Род службы Пассажирский
Конструкционная скорость 160 км/ч
Технические данные
Осевая формула 30−30
Полный служебный вес 135±3 % т
Нагрузка от движущих осей на рельсы 21 т
Длина локомотива 21 700 мм
Тип двигателя 2А-5Д49 (16ЧН26/26)
Мощность двигателя 4000 л.с.
Тип передачи Электрическая переменно-постоянного тока
Тип ТЭД ЭД-121АУ1
Диаметр колёс 1220 мм
Cила тяги длительного режима 17000 кГ
Скорость длительного режима 48-50 км/ч
Эксплуатация
Страны ТЭП70 Россия, Украина, Белоруссия, Литва, Латвия, Эстония, Узбекистан, Казахстан, ТЭП70БС Россия, Белоруссия, Литва, Узбекистан, ТЭП70У, ТЭ70 Россия

 

Увеличение веса и скорости пассажирских поездов в 1970-е годы XX века требовало применения на некоторых линиях более мощных, чем ТЭП60 тепловозов. На Приволжской и Октябрьской дорогах стали применять тепловозы 2ТЭП60. Но применение двухсекционных тепловозов вызывало и двукратное увеличение расходов. Требовалось создание тепловоза, имеющего мощность большую, чем ТЭП60, но без значительного увеличения веса тепловоза.

Задачу проектирования тепловоза, отвечающего таким требованиям, выполнила группа конструкторов Коломенского тепловозостроительного завода под руководством Ю.В. Хлебникова.

Первый тепловоз по новому проекту был построен в июне 1973 года. Тепловоз получил обозначение ТЭП70-0001. В1974 —1975 годах были построены тепловозы 0002, 0003, 0004, в 1977 — 1978 годах 0005, 0006, 0007. Опытные тепловозы ТЭП70 стали поступать в депо Орша Белорусской железной дороги для эксплуатационных испытаний. Тепловоз ТЭП70-0005 прошёл теплотехнические и динамические (по воздействию на путь) испытания.

Кузов тепловоза был изготовлен из низколегированной стали и алюминиевых сплавов. Кузов — несущий, ферменно-раскосного типа. Опирание кузова на тележки через две центральные маятниковые опоры с резиновыми амортизаторами и четырьмя боковыми цилиндрическими винтовыми пружинами. Тележки были выполнены аналогично тележкам тепловоза ТЭП60, но имели отличия ввиду того, что колёсные пары выполнены диаметром по кругу катания 1220 мм.

Опыт, полученный в результате испытаний, дал конструкторам Коломенского завода материал для внесения изменений в конструкцию тепловоза. С 1978 года завод приступил к производству тепловозов с номера 0008, которые во многом отличались от своих предшественников, являя собой скорее новую серию тепловозов (по сути это был ТЭП75 с дизелем от первых номеров ТЭП70).

Далее, изменения в конструкцию, вносились в течение выпуска. В глобальном плане, принято различать 3 типа тепловозов ТЭП70:

  • 1 тип — опытные 0001-0007.
  • 2 тип — серийные 0008-0185, с вертикальным расположением буферных фонарей, и клепаным соединением панелей обшивки кузова. До конца 30-х номеров лобовое стекло кабины не имело вертикальной перемычки, хотя, на деле, состояло из двух половинок, склеенных друг с другом. Впоследствии от этой схемы отказались, т.к после 1-й зимы шов давал трещину, стекло теряло герметичность.
  • 3 тип — серийные 0186-0576, с горизонтальным расположением буферных фонарей, смешанным соединением кузовных панелей.

До середины 300-х номеров, тепловозы, аналогично ТЭП60, предусматривали возможность работы по СМЕ, для чего, со стороны кабины «Б», оснащались розетками межпоездных соединений. Далее, в связи с отсутствием необходимости подобного соединения, розетки заводом более не устанавливались, а на ранее выпущенных тепловозах, зачастую — ликвидировались.

Усовершенствованные модели получили наименования ТЭП70У и ТЭП70БС. От ТЭП70 они отличаются более технологичным кузовом, наличием МСУД (микропроцессорной системы управления и диагностики), расположением песочных бункеров (они расположены непосредственно над тележками, как у ТЭП60 и первых ТЭП70) и другими мелкими деталями. Отличия между ТЭП70У и ТЭП70БС сводятся к наличию у последнего системы электроотопления состава, подобно пассажирским электровозам. На практике, электроотопление практически не используется, в силу отсутствия дроссельного экранирования аппаратуры СЦБ на большинстве неэлектрифицированных линий в России.

 

 

На базе тепловоза ТЭП70 создан грузовой тепловоз 2ТЭ70 с двумя шестиосными секциями, унифицированный по основным узлам с пассажирскими тепловозами ТЭП70У и ТЭП70БС, предназначенный для вождения грузовых поездов массой до 6000 т.

Тепловоз впервые представлен 14 июля 2004 года. Тепловоз прошёл необходимые испытания, на машину был получен сертификат соответствия РСФЖТ. Тепловоз 2ТЭ70-001 отправлен в депо Улан-Удэ в ноябре 2006 года. В марте 2007 года в то же депо направлена вторая машина. По состоянию на декабрь 2010 года изготовлено 12 машин. 11 этих тепловозов уже стоит на ремонте в депо Улан-Удэ и в связи с отсутствием запасных частей трудно выполнить ремонт данного тепловоза, из-за этого увеличивается простой локомотивов на межпоездном ремонте. На сегодняшний день 11 тепловозов данной модификации приписаны к локомотивному депо Котлас Северной железной дороги.

– Конец работы –

Эта тема принадлежит разделу:

Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів

Модуль кредита... Історія розвитку локомотивів паровози тепловози електровози тощо Класифікація і типи основних вузлів елементів...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СМЕ (СМЕТ).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо.).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі Розвиток паровой тягі. Роль російських вчених у будуванні паровозів. Електровоз

Тягові приводи. Компоновка та системи локомотивів.
Розділ 3. Тягові приводи Призначення, класифікація та загальна будова тягових приводів коліс.   Електричний привід колісних пар. &nb

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі. Курс «Локомотиви магістрального транспорту(загальна будова та їх взаємо

Предшественник.
В марте 1946 советское правительство разместило заказ фирме General Electric (GE) на изготовление 12 восьмиосных электровозов. Согласно техническому заданию, в часовом режиме мощность должна была с

Опытные электровозы Н8.
В 1952 году под руководством главного конструктора НЭВЗа Б. В. Суслова началось проектирование нового электровоза, а в марте 1953 года уже был изготовлен первый опытный восьмиосный электровоз Н8

Серийные электровозы
В 1956 году начался серийный выпуск электровозов на Новочеркасском электровозостроительном заводе. Для увеличения выпуска электровозов к программе их выпуска решено было подключить Тбилисский элект

Модернизации.
На электровозах ВЛ8-185, 186 и 187 в системе рессорного подвешивания были поставлены резиновые элементы, которые уменьшили тряску и сделали ход электровоза более плавным. Однако эти элементы работа

Предпосылки к появлению электровоза.
Ещё в конце 1920-х гг., когда только начинали электрифицировать направление через Сурамский перевал, многие специалисты хорошо понимали, что в будущем электрическая тяга на постоянном токе с номина

Модификации.
ВЛ60П-001. В конце 1961 года Новочеркасский электровозостроительный завод выпустил электровоз ВЛ60П-001, предназначенный для пассажирской службы. На этом электровозе устано

ВЛ60ПК (ВЛ60КП).
    Электровозы ВЛ60П, о

Грузовые опытные двенадцатиосные электровозы ВЛ85.
Все построенные до 1983 г. для железных дорог Советского Союза грузовые электровозы являются шести- или восьмиосными и имеют две кабины машиниста, причем два электровоза ВЛ80С могут упра

Устройство определения рода тока.
       

Электровоз ЧС2
(заводские обозначения — 25Ео, 34Е; прозвище — «Чебурашка») — магистральный пассажирский электровоз постоянного тока, строившийся на заводах Шкода с 1958 по 1973 год для железных дорог Советского С

Серийные электровозы ЧС2.
С учетом опыта испытаний и эксплуатации электровозов ЧС3, ЧС2-001, ЧС2-002 заводы Шкода спроектировали и изготовили в 1961 году первые электровозы заводской серии 34E0.

Электровоз ЭП1
(Электровоз Пассажирский, тип 1) — пассажирский электровоз переменного тока, серийно выпускающийся НЭВЗ до 2007 года, с появлением электровоза ЭП1М, выпуск прекратился.  

Электровозы серии Э5К
(Э — электровоз, 5 — номер модели, К — коллекторные тяговые электродвигатели) предназначены для вождения грузовых, пригородных и вывозных поездов на железных дорогах, электрифицированных на однофаз

Электровоз 2ЭС5К.
Индекс С в наименовании, от слова «секционный»

Электровоз 3ЭС5К.
В 2007 году сертифицирована бустерная (промежуточная) секция для электровоза, которая позволяет увеличить его мощность в полтора раза и использовать для транспортировки сверхтяжелых составов или ра

Механическая передача.
Механическая передача включает фрикционную муфту, коробку передач с реверс-редуктором; а также карданные валы с осевыми редукторами или отбойный вал с дышловой передачей. М. П. обладает относительн

Электрическая передача.
В электрическая вал дизеля вращает тяговый генератор , питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре— при индивидуальном приводе— через осевой р

Гидравлическая передача.
Гидравлическая передача включает собственно гидропередачу и механическую передачу на колесные пары (см. выше). В гидропередаче крутящий момент преобразуется с помощью гидромуфт и гидротрансформатор

Тепловоз ТЭП150.
      Односекционный

Тепловоз ТЭМ103.
    Основ

Розділ 2. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів.
  Конструкція головних несучих рам і їх елементів. Кузови ненесучого типу. Несучі кузови і особливості їх роботи.   §2.1. Типы рам и кузо

Вертикальные силы.
А. Вес экипажа локомотива (включает силу тяжести его частей и 2/3 запаса топлива и песка). Б.Вес оборудования (включает нагружающие расчитываемый объект с

Боковые силы.
A. Центробежная сила. Определяется отдельно для кузова и тележек исходя из непогашенного ускорения 0,7м/с2. Равнодействующая этой силы прикладывается в центре тяжести.

Основные материалы для изготовления кузова и рам тележек.
Для изготовления несущих элементов кузова, главной рамы и рам теле-жек рекомендуется использовать малоуглеродистые и низколегированные спокойные стали, не склонные к хрупкому разрушению при темпера

Расчеты рам и кузовов на статическую нагрузку.
Расчеты прочности конструкций экипажной части локомотивов в настоящее время в основном выполняются методом конечных элементов (МКЭ). Для этого используют соответствующие программные комплексы от не

Особенности работы обшивки и стержневых элементов конструкции на устойчивость.
В расчетах надо предусматривать оценку коэффициента запаса устойчивости по формуле   (2.9) где σк

Расчеты усталостной прочности.
Расчетам на усталость подвергаются: –рамы тележек, надрессорные балки, промежуточные рамы, корпуса букс; –хребтовые, продольные боковые, основные поперечные и шкворневые балки, шк

Тепловоз 2ТЭ116.
Тепловоз 2ТЭ116 состоит из двух одинаковых однокабинных секций (рис. 2.18), управляемых с одного поста кабины любой секции. При необходимости каждая секция может быть использована как самостоятельн

Тепловоз 2ТЭ10М.
Тепловозы типа ТЭ10М выпускаются производственным объединением «Ворошиловградтепловоз» в двух исполнениях: двухсекционные общей мощностью 4412 кВт —2ТЭ10М и трехсекционные общей мощностью 6618 кВт

Тепловоз ТЭП1150.
Магистральный пассажирский тепловоз ТЭП150 мощностью 3100 кВт с электрической передачей переменно-постоянного тока, с поосным регулирова-нием силы тяги, электрическим тормозом и энергоснабжением па

Тепловоз ТЭП70.
Увеличение веса пассажирских поездов и скорости их движения потребо-вало применения на некоторых неэлектрифицированных линиях двухсекцион-ных тепловозов 2ТЭП60. При этом удвоение мощности и веса ло

Электровоз ВЛ80к.
Электрическое и пневматическое оборудование располагают в кабинах, кузовах, под кузовами и на крышах обеих секций электровоза (рис. 2.23—2.27). В кабинах обоих кузовов расположение оборудо

Электровоз ВЛ10.
К началу 1959 года СССР вышел на первое место в мире по протяженности электрифицированных линий. Работали они в то время на постоянном токе, что вполне соответствовало мировым стандартам (около 70%

Устройство рессорного подвешивания.
У отечественных тепловозов широкое распространение получило одноступенчатое сбалансированное (четырехточечное) рессорное подвешивание из листовых рессор и спиральных пружин (рис. 2.46). На

Основные характеристики рессорного подвешивания.
К основным характеристикам рессорного подвешивания относят жесткость ступеней, суммарную жесткость, степень демпфирования, распределение демпфирования по ступеням. Часто вместо жесткости указывают

Жесткость сложной системы подвешивания.
Всистеме подвешивания упругие элементы могут быть соединены параллельно, последовательно или сложным образом в отдельную точку подвешивания. Жесткость системы подвешивания определяется на основе пр

Конструкция тяговых устройств.
В отечественном локомотивостроении наибольшее распространение получили шкворневые тяговые устройства. Тяговое устройство с жестким шкворнем применялось на магистральных тепловозах 2

Розділ 3. Тягові приводи
Призначення, класифікація та загальна будова тягових приводів коліс.   §3.1. Назначение, классификация и общее устройство тяговых приводов. Механизмы, осущест

Конструкция опорно-центрового подвешивания тягового двигателя.
В этом случае (см. рис. 3.1,б) появляется необходимый элемент конструкции — полый вал. На рис. 3.14 зубчатое колесо двухсторонней косозубой передачи состоит из двух частей: центра

Конструкция опорно-рамного подвешивания тягового двигателя.
Приводы II класса с компенсирующими связями, расположенными на стороне меньшего крутящего момента. В приводах этой группы компенсирующий элемент — кардан, расположенный между валом якоря и ш

Выбор параметров зубчатого зацепления тягового редуктора.
Здесь и далее ограничимся рассмотрением лишь прямозубых передач. Зубчатую передачу приходится вписывать в ограниченные габариты при заданном межцентровом расстоянии, что существенно затрудняет выбо

Вспомогательные системы энергетической установки.
  §4.3.Топливная система. Назначение системы. Топливная система предназначена для размещения запасов топлива, фильтрации, подогрева и подвода его к энергетическим установкам

Приборы контроля температуры и защиты дизеля от перегрева.
Для контроля температуры предусмотрены электротермометры в кабинах машиниста. Датчики этих термометров установлены на выходном трубопроводе первого контура системы охлаждения. В дизельном отделении

Назначение, типы и компоновочные решения.
Охлаждающее устройство предназначено для отвода теплоты и обеспечения заданного температурного режима дизеля. В тепловозных дизелях только около 40% теплоты, выделяемой при сгорании топлива,

Конструкции, параметры и расчет водо- и масловоздушных секций радиаторов.
Радиаторы тепловоза предназначены для отвода теплоты от воды и масла в атмосферу. Их собирают из отдельных стандартных секций, объединенных подводящими и отводящими коллекторами. Применение стандар

Конструкция, параметры и расчет водомасляных теплообменников.
Водомасляные теплообменники предназначены для охлаждения водой масла дизеля или гидравлической передачи. В современных тепловозах в большинстве случаев применяют двухконтурную систему охлаждения с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги