рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Устройство рессорного подвешивания.

Устройство рессорного подвешивания. - раздел История, Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів У Отечественных Тепловозов Широкое Распространение Получило Одноступенчатое С...

У отечественных тепловозов широкое распространение получило одноступенчатое сбалансированное (четырехточечное) рессорное подвешивание из листовых рессор и спиральных пружин (рис. 2.46).

Нагрузка на буксы передается через балансиры 6. Пружины 2, расположенные по обе стороны листовой рессоры 1, передают нагрузку от рамы тележки на хомут рессоры через подвеску 15 и валик 4. Концы листовой рессоры соединены с концами балансиров при помощи подвесок 5 и валиков 12 и 14. Нагрузка на пружины передается через резинометаллические прокладки. Стальные валики и втулки подвергнуты закалке и смазаны консистентной смазкой, запрессованной через клапаны на торцах валиков. Эти шарнирные соединения в эксплуатации подвержены большому износу, причиной которого являются значительные удельные давления между валиками и втулками, особенно возрастающие вследствие перекосов подвесок при поперечных перемещениях букс относительно рамы тележки. В связи с этим шарнирная система, соединяющая упругие элементы стороны тележки, недостаточно чувствительна из-за значительного трения в шарнирах. К тому же динамические нагрузки, имеющие небольшую продолжительность действия, не успевают перераспределяться между колесами вследствие значительной инерции балансиров и рессор, замедляющей их угловые перемещения.

На тепловозах со сбалансированным рессорным подвешиванием более поздних выпусков конструкция шарнирных узлов изменена. Валики 4,9,12 и 14 сделали несколько меньшего диаметра, при работе рессорного подвешивания в этом случае валики не скользят относительно втулок 13, а слегка перекатываются. Таким образом, трение скольжения заменено трением качения. Это значительно уменьшило износ пары валик—втулка, исчезла необходимость в смазывании шарнирных узлов рессорного подвешивания.

Изложенное выше существенно снижает преимущества сбалансированной системы рессорного подвешивания в отношении выравнивания нагрузок на колеса и объясняет переход к индивидуальному

 

 

подвешиванию на тепловозах 2ТЭ10М, 2ТЭ116. Отказ от применения балансиров и многочисленных шарниров способствует снижению ремонтных расходов и затрат материалов на ремонт; расход металла на тепловоз в среднем уменьшается на 240 кг.

Вертикальная нагрузка через комплекты пружин передается на приливы бесчелюстных букс. На каждую колесную пару нагрузка передается от рамы тележки четырьмя комплектами пружин. Такое подвешивание называется индивидуальным. Но у индивидуального подвешивания есть и недостатки. Одним из них является большая чувствительность тележек к изменению статической нагрузки от колес на рельсы, от размеров и жесткости пружин, поставленных на тележку. Например, при разности в высоте под рабочей нагрузкой двух комплектов пружин на одну из букс 10 мм по сравнению с другими комплектами при номинальной жесткости пружин 750 Н/мм создается разница в статической нагрузке на эту буксу около 6 103 Н

На рис. 2.47, а представлен комплект пружин рессорного подвешивания тепловоза 2ТЭ116 (в разрезе), а для более подробного ознакомления с конструкцией подвешивания буксового узла на рис. 2.47, б приведено его пространственное изображение.

Комплект пружин (см. рис. 2.47) состоит из пружин 4,5 и 7, опор пружин 3 и 8, прокладок 2 (резиновых амортизаторов со стальной арматурой), предназначенных для регулирования нагрузок на каждую колесную пару. Для исключения касания витков внутренних пружин при их концентрическом расположении относительно наружной, зазор между ними устанавливается не менее 5 мм на сторону, применяются пружины, навитые в разные стороны. Пружины изготавливают из круглого калиброванного проката горячекатаной пружинной стали 60С2А ГОСТ 14959-79. Твердость пружин в термообработанном состоянии НRС 40—47. После термообработки пружины упрочняют наклепом дробью. Размеры пружин комплекта подобраны таким образом, что наружная пружина воспринимает 65 % всей нагрузки, средняя — 23 % и внутренняя — 12 %. Для фиксации положения пружины в верхнем листе рамы тележки служит фиксирующий штырь. Предусмотрена замена поврежденной пружины без выкатки колесной пары приспособлением с технологическим болтом 6.

 

 

Для гашения колебаний надрессорного строения тепловоза параллельно с пружинами включены фрикционные гасители колебаний. На рис. 2.48 представлены общий вид (о) фрикционного гасителя колебаний и его пространственное изображение (б).

Корпус гасителя колебаний установлен на вертикальных листах боковин рамы тележки, над каждой буксой. Шток 10 (см. рис. 2.48) одним концом упруго прикреплен к кронштейну крышки буксы амортизаторами 9, сухарями 8 и обоймами 7, другой его конец аналогично соединен со стальным поршнем 2, зажатым пружиной 5 между двумя вкладышами 4, 13. Накладки 6 вкладышей изготовлены из фрикционного материала

 

 

(тормозная лента толщиной 6—8 мм с коэффициентом трения около 0,4). При колебаниях надрессорного строения происходит перемещение рамы тележки относительно колесной пары с буксами и соответственно перемещение поршня между вкладышами. Вкладыши пружиной 5 поджимаются к поршню и при их относи- тельном перемещении возникает сила трения, вызывающая демпфирование колебаний. Величина силы трения фрикционного гасителя равна 4,5—5,5 кН, что соответствует коэффициенту относительного трения φ = 5—5,5 % (отношение силы трения к подрессоренному весу, приходящемуся на буксу).

Для уменьшения воздействия на путь на современных пассажирских локомотивах применяют двухступенчатое рессорное подвешивание.

Так, на тепловозах ТЭП75, ТЭП70, ТЭП70А применено мягкое двухступенчатое подвешивание, состоящее из индивидуального буксового (первая ступень) и четырех комплектов пружин типа «Флексикойл» (вторая ступень).

Рессорное подвешивание буксовой ступени тепловозов ТЭП70 (рис. 2.49) состоит из цилиндрических пружин 4 и резиновых амортизаторов 2 над ними.

 

 

Нижними витками пружины опираются на опорную поверхность стаканов 6, установленных на приливах корпуса буксы. Со стороны рамы тележки пружины с амортизаторами центрируют фиксатором 7, закрепленным в верхнем опорном стакане 3.

Пружины 3 второй ступени рессорного подвешивания типа «Флексикойл» (рис. 2.50) установлены в нишах кузова 1. Они центрируются верхними 2 и нижними 4 стаканами конической формы, обеспечивающей

 

 

 

работу пружин на сдвиг при действии поперечных сил.

Параллельно пружинам второй ступени рессорного подвешивания установлены четыре гидравлических гасителя колебаний.

Гидравлические гасители, применяемые на тележках локомотивов и вагонов, обычно телескопические поршневые. Такие гасители имеют незначительную массу, удобны в эксплуатации, требуемая характеристика демпфирования обеспечивается соответствующим выбором дроссельно-клапан- ной системы. Конструкции гасителей разнообразны. Однако принцип их действия практически одинаков. Поглощение энергии гасителей осуществляется последовательным перемещением вязкой жидкости поршнем через узкие (дроссельные) каналы и всасыванием ее обратно через клапан одностороннего действия. При прохождении жидкости через дроссельные каналы возникает вязкое трение, в результате чего механическая энергия колебательного движения локомотива или вагона превращается в тепловую, которая затем рассеивается.

Такой гаситель колебаний (рис. 2.51) состоит из основных частей: рабочего цилиндра 4 диаметром dц , поршня 6 со штоком 1 диаметром dш, верхнего 7 и нижнего 8 клапанов, корпуса 3 и направляющей втулки 2. Между цилиндром и корпусом образуется резервуар 5. Гаситель заполнен вязкой жидкостью. При движении поршня вниз (ход сжатия) верхний клапан приподнимается и жидкость из- под поршневой полости цилиндра перетекает в надпоршневую. Однако вследствие движения штока давление в полости рабочего цилиндра повышается и часть жидкости с большим гидродинамическим сопротивлением перетекает через дроссельное отверстие нижнего клапана в резервуар. В это время давление жидкости в надпоршневой и подпоршневой полостях цилиндра одинаковое, так как полости соединены между собой через большие отверстия верхнего клапана и поршня.

 

 

 

 

 

При движении поршня вверх (ход растяжения) верхний клапан закрывается, давление жидкости в надпоршневой полости цилиндра повышается и жидкость с большим гидродинамическим сопротивлением перетекает через дроссельные каналы верхнего клапана в подпоршневую полость. Одновременно в этой полости наступает разрежение, так как объем перетекающей в нее из надпоршневой полости жидкости меньше объема подпоршневой полости. Вследствие этого нижний клапан поднимается и часть жидкости засасывается в подпоршневую полость из резервуара, заполняя освобожденное штоком пространство. Резервуар гасителя колебаний служит не только емкостью для жидкости, вытесняемой штоком из цилиндра, но и сборником жидкости, просачивающейся через кольцевой зазор между направляющей втулкой и штоком.

При ходе сжатия гидродинамическое давление со стороны дросселируемой жидкости испытывает лишь часть площади поршня,

равная площади поперечного сечения штока , а при

обратном ходе — часть площади, равная (давление в резервуаре принимаем равным атмосферному). Чтобы гаситель колебания развивал одинаковые усилия сопротивления РГ при ходах сжатия и растяжения, а также для взаимозаменяемости верхнего и нижнего клапанов, соотношение диаметров штока и цилиндра определяют из равенства

(2.78)

Рабочей жидкостью для гидравлических гасителей колебаний вагонных тележек служат веретенное, приборное или трансформаторное масла, а также другие специальные жидкости. На отечественных дорогах гидравлические гасители заливают приборным маслом МВП ГОСТ 1805-76 или маслом АМГ-10 ГОСТ 6794-75.

Величина коэффициента сопротивления гидравлического гасителя колебания с силой сопротивления, пропорциональной первой степени скорости перемещения поршня, определяется по индикаторной диаграмме (рис. 2.52), записанной при испытании гасителя на специальном стенде, с использованием формулы

(2.79)

где А — длина индикаторной диаграммы, м; m — масштаб записывающего устройства, Н/м; Н— ширина индикаторной диаграммы, м;

п — число двойных ходов поршня гасителя в секунду, 1/с.

 

Клапаны 7 и 8 (см. рис. 2.51) снаб­жены предохранительными шарико­выми устройствами с пружиной (на схеме они не показаны) дня ограни­чения сопротивления гасителя и дав-

ления жидкости. При повышении давления жидкости сверх допустимого шариковое устройство срабатывает и перепускает часть жидкости, минуя дроссельные каналы.

На рис. 2.53 приведены ниды теоретической 1 и реальной 2 характеристик гидравлического гасителя с предохранительным устройством. Срабатывание предохранительного устройства происходит при скоростях движения поршня ν >ν0; (β1 и (β2 — коэффициенты сопротивления(демпфирования) гасителя. Для гидравлических гасителей, устанавливаемых на отечественных ло­комотивах и вагонах β1 = (0,6—1,2)•105; (β2 = (0,15—0,3)•105Нс/м, в зависимости от типа гасителя и его настройки.

В тележках пассажирских вагонов и некоторых локомотивах установлены преимущественно гасители колебаний производства Калининского (Тверского) вагоностроительного завода, разработанные совместно с ЛИИЖТ (ПГУПС) (типа КВЗ-ЛИИЖТ). Эксплуатируются также тележки, оборудованные гасителями поставки Германии (типа ВВW) и Венгрии (типа «Rаbа»). Все эти гасители принципиально мало отличаются один от другого. В последние годы серийное производство гасителей налажено на Первомайском заводе «Транспневматика». Коломенский завод для своих тепловозов устанавливает гасители собственного изготовления.

 

 

 

Рессорное подвешивание первой ступени (рис. 2.54). Устанавливается на буксах колесных пар и является индивидуальным для каждого колеса. Статический прогиб первой ступени 56 мм, а эквивалентный (с учетом жесткости буксовых поводков) — 44 мм. На одной двухосной тележке установлено восемь комплектов двойных концентрических пружин. Комплекты пружин удерживаются от поперечных смещений верхней 3 и нижней 7 опорами. Между верхней опорой и рамой тележки установлены резиновые амортизаторы 2 и регулировочные прокладки 1. Резиновые амортизаторы уменьшают шум и вибрацию, идущие от колесных пар. Регулировочные прокладки 1 устанавливаются при выполнении развески тепловоза на локомотивных весах, поэтому при разборке и сборке тележек пружинные комплекты, амортизаторы и регулировочные прокладки нельзя менять местами. При работах, связанных с выемкой буксовых комплектов (подъемка тепловоза с разборкой двухосных тележек), необходимо все пружинные комплекты стянуть технологическими болтами, иначе разборка тележки будет очень затруднена, а последующая сборка невозможна. Свободные пружины для установки болтов сжимаются на специальном прессе.

 

 

 

Рессорное подвешивание второй ступени (рис. 2.55). Основные элементы второй ступени: восемь комплектов пружин 3, состоящих каждый из трех концентрически расположенных пружин, восемь гидравлических гасителей вертикальных колебаний 2, нижние 4 и верхние 5 плиты для установки комплектов пружин, кронштейны 6 и 7 для крепления валиками гасителей колебаний, роликовые опоры 8, закрепленные болтами на верхних плитах. Кронштейны 6 и 7 приварены соответственно к нижним и верхним плитам. Нижние плиты от поперечных смещений удерживаются фиксаторами 10, которые входят в отверстия, выполненные в верхних листах промежуточной рамы.

При подъемке тепловоза верхние головки гасителей колебаний нужно отсоединять от кронштейнов 6 во избежание перекосов гасителей.

 

 

Одноступенчатое индивидуальное рессорное подвешивание бесчелюстной трехосной тележки тепловоза ЧМЭЗ – подробная конструкция на рис. 2.56.

Вес на каждую ось передается через две группы пружин и два балансира. Комплект рессорного подвешивания дополняется гидравлическими гасителями колебаний. Статический прогиб рессорного подвешивания равен 102,5 мм.

Балансир 12 отлит из стали в виде двуплечего рычага двутаврового сечения. Он установлен на оси колесной пары, поэтому является корпусом буксы. На конце длинного плеча сделано отверстие под резинометаллическую втулку 13 (сайлентблок), которая запрессована в балансир усилием 100 кН. Втулка состоит из двух стальных втулок а и б, между которыми находится слой резины в. Во внутренней втулке а сделана канавка под шпонку, а наружная 6 разрезана для придания ей пружинящих свойств, что обеспечивает более надежное крепление резинометаллической втулки в балансире.

Балансир соединен с рамой тележки пальцем 17, который проходит через стальные сменные втулки 15, запрессованные в отверстия фартука 16, и резинометаллическую втулку 13. На наружной цилиндрической поверхности пальца сделана овальная канавка под шпонку 14, а к его торцу приварен фланец 18 с четырьмя отверстиями. Относительно втулки палец фиксируется шпонкой 14, а относительно фартука — двумя штифтами 19, запрессованными в отверстия фланца, и двумя болтами, ввернутыми в отверстия фартука. В пальце 17 просверлено глухое отверстие 2 (в эксплуатации оно заглушено пробкой). Резьбовая часть отверстия используется для крепления приспособления, с помощью которого при ремонте вынимают палец.

 

 

Поворот балансира относительно рамы тележки происходит только благодаря смятию резины во втулке, что способствует гашению колебаний подрессоренных масс. Использование резинометаллических втулок в узлах соединения колесных пар с рамой тележки улучшает условия вписывания тепловоза в кривые участки пути, так как колесные пары не только перемещаются вдоль их оси, но и поворачиваются на некоторый угол. Осевой разбег колесной пары 3,0—3,5 мм обеспечивается зазором между торцами резинометаллической втулки 13 и втулки 15. При сборке буксы необходимо обеспечить одинаковые зазоры 1 мм по обоим торцам втулки 13.

Короткое плечо балансира является опорой для двух цилиндрических пружин: наружной 77 и внутренней 10 с разным направлением витков. Сверху пружины упираются в тарелку 3, приваренную к продольной балке 2 рамы тележки. Между тарелкой и верхним торцом пружин установлена резинометаллическая прокладка 5 и стальная шайба 6. Снизу пружины входят в гнездо короткого плеча, в центре которого сделано отверстие диаметром 80 мм. Внутри пружин проходит болт 4, вваренный в тарелку 3. При транспортировке тележки пружины 10 и 11 сжимают гайкой 9, навернутой снизу на болт 4. Короткое плечо балансира заканчивается вилкой 8 для соединения с ушком гидравлического гасителя колебаний 7, установленного параллельно комплекту пружин.

 

– Конец работы –

Эта тема принадлежит разделу:

Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів

Модуль кредита... Історія розвитку локомотивів паровози тепловози електровози тощо Класифікація і типи основних вузлів елементів...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Устройство рессорного подвешивания.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо.).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі Розвиток паровой тягі. Роль російських вчених у будуванні паровозів. Електровоз

Тягові приводи. Компоновка та системи локомотивів.
Розділ 3. Тягові приводи Призначення, класифікація та загальна будова тягових приводів коліс.   Електричний привід колісних пар. &nb

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі. Курс «Локомотиви магістрального транспорту(загальна будова та їх взаємо

Предшественник.
В марте 1946 советское правительство разместило заказ фирме General Electric (GE) на изготовление 12 восьмиосных электровозов. Согласно техническому заданию, в часовом режиме мощность должна была с

Опытные электровозы Н8.
В 1952 году под руководством главного конструктора НЭВЗа Б. В. Суслова началось проектирование нового электровоза, а в марте 1953 года уже был изготовлен первый опытный восьмиосный электровоз Н8

Серийные электровозы
В 1956 году начался серийный выпуск электровозов на Новочеркасском электровозостроительном заводе. Для увеличения выпуска электровозов к программе их выпуска решено было подключить Тбилисский элект

Модернизации.
На электровозах ВЛ8-185, 186 и 187 в системе рессорного подвешивания были поставлены резиновые элементы, которые уменьшили тряску и сделали ход электровоза более плавным. Однако эти элементы работа

Предпосылки к появлению электровоза.
Ещё в конце 1920-х гг., когда только начинали электрифицировать направление через Сурамский перевал, многие специалисты хорошо понимали, что в будущем электрическая тяга на постоянном токе с номина

Модификации.
ВЛ60П-001. В конце 1961 года Новочеркасский электровозостроительный завод выпустил электровоз ВЛ60П-001, предназначенный для пассажирской службы. На этом электровозе устано

ВЛ60ПК (ВЛ60КП).
    Электровозы ВЛ60П, о

Грузовые опытные двенадцатиосные электровозы ВЛ85.
Все построенные до 1983 г. для железных дорог Советского Союза грузовые электровозы являются шести- или восьмиосными и имеют две кабины машиниста, причем два электровоза ВЛ80С могут упра

Устройство определения рода тока.
       

Электровоз ЧС2
(заводские обозначения — 25Ео, 34Е; прозвище — «Чебурашка») — магистральный пассажирский электровоз постоянного тока, строившийся на заводах Шкода с 1958 по 1973 год для железных дорог Советского С

Серийные электровозы ЧС2.
С учетом опыта испытаний и эксплуатации электровозов ЧС3, ЧС2-001, ЧС2-002 заводы Шкода спроектировали и изготовили в 1961 году первые электровозы заводской серии 34E0.

Электровоз ЭП1
(Электровоз Пассажирский, тип 1) — пассажирский электровоз переменного тока, серийно выпускающийся НЭВЗ до 2007 года, с появлением электровоза ЭП1М, выпуск прекратился.  

Электровозы серии Э5К
(Э — электровоз, 5 — номер модели, К — коллекторные тяговые электродвигатели) предназначены для вождения грузовых, пригородных и вывозных поездов на железных дорогах, электрифицированных на однофаз

Электровоз 2ЭС5К.
Индекс С в наименовании, от слова «секционный»

Электровоз 3ЭС5К.
В 2007 году сертифицирована бустерная (промежуточная) секция для электровоза, которая позволяет увеличить его мощность в полтора раза и использовать для транспортировки сверхтяжелых составов или ра

Механическая передача.
Механическая передача включает фрикционную муфту, коробку передач с реверс-редуктором; а также карданные валы с осевыми редукторами или отбойный вал с дышловой передачей. М. П. обладает относительн

Электрическая передача.
В электрическая вал дизеля вращает тяговый генератор , питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре— при индивидуальном приводе— через осевой р

Гидравлическая передача.
Гидравлическая передача включает собственно гидропередачу и механическую передачу на колесные пары (см. выше). В гидропередаче крутящий момент преобразуется с помощью гидромуфт и гидротрансформатор

СМЕ (СМЕТ).
Тепловозы в СССР выпускались в составе одной, двух, реже— трёх или четырёх секций. Мощность одной секции тепловоза может составлять до 6600 л.с. (американский EMD DDA40X), но у серийных тепловозов

Тепловоз ТЭП150.
      Односекционный

Тепловоз ТЭМ103.
    Основ

Розділ 2. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів.
  Конструкція головних несучих рам і їх елементів. Кузови ненесучого типу. Несучі кузови і особливості їх роботи.   §2.1. Типы рам и кузо

Вертикальные силы.
А. Вес экипажа локомотива (включает силу тяжести его частей и 2/3 запаса топлива и песка). Б.Вес оборудования (включает нагружающие расчитываемый объект с

Боковые силы.
A. Центробежная сила. Определяется отдельно для кузова и тележек исходя из непогашенного ускорения 0,7м/с2. Равнодействующая этой силы прикладывается в центре тяжести.

Основные материалы для изготовления кузова и рам тележек.
Для изготовления несущих элементов кузова, главной рамы и рам теле-жек рекомендуется использовать малоуглеродистые и низколегированные спокойные стали, не склонные к хрупкому разрушению при темпера

Расчеты рам и кузовов на статическую нагрузку.
Расчеты прочности конструкций экипажной части локомотивов в настоящее время в основном выполняются методом конечных элементов (МКЭ). Для этого используют соответствующие программные комплексы от не

Особенности работы обшивки и стержневых элементов конструкции на устойчивость.
В расчетах надо предусматривать оценку коэффициента запаса устойчивости по формуле   (2.9) где σк

Расчеты усталостной прочности.
Расчетам на усталость подвергаются: –рамы тележек, надрессорные балки, промежуточные рамы, корпуса букс; –хребтовые, продольные боковые, основные поперечные и шкворневые балки, шк

Тепловоз 2ТЭ116.
Тепловоз 2ТЭ116 состоит из двух одинаковых однокабинных секций (рис. 2.18), управляемых с одного поста кабины любой секции. При необходимости каждая секция может быть использована как самостоятельн

Тепловоз 2ТЭ10М.
Тепловозы типа ТЭ10М выпускаются производственным объединением «Ворошиловградтепловоз» в двух исполнениях: двухсекционные общей мощностью 4412 кВт —2ТЭ10М и трехсекционные общей мощностью 6618 кВт

Тепловоз ТЭП1150.
Магистральный пассажирский тепловоз ТЭП150 мощностью 3100 кВт с электрической передачей переменно-постоянного тока, с поосным регулирова-нием силы тяги, электрическим тормозом и энергоснабжением па

Тепловоз ТЭП70.
Увеличение веса пассажирских поездов и скорости их движения потребо-вало применения на некоторых неэлектрифицированных линиях двухсекцион-ных тепловозов 2ТЭП60. При этом удвоение мощности и веса ло

Электровоз ВЛ80к.
Электрическое и пневматическое оборудование располагают в кабинах, кузовах, под кузовами и на крышах обеих секций электровоза (рис. 2.23—2.27). В кабинах обоих кузовов расположение оборудо

Электровоз ВЛ10.
К началу 1959 года СССР вышел на первое место в мире по протяженности электрифицированных линий. Работали они в то время на постоянном токе, что вполне соответствовало мировым стандартам (около 70%

Основные характеристики рессорного подвешивания.
К основным характеристикам рессорного подвешивания относят жесткость ступеней, суммарную жесткость, степень демпфирования, распределение демпфирования по ступеням. Часто вместо жесткости указывают

Жесткость сложной системы подвешивания.
Всистеме подвешивания упругие элементы могут быть соединены параллельно, последовательно или сложным образом в отдельную точку подвешивания. Жесткость системы подвешивания определяется на основе пр

Конструкция тяговых устройств.
В отечественном локомотивостроении наибольшее распространение получили шкворневые тяговые устройства. Тяговое устройство с жестким шкворнем применялось на магистральных тепловозах 2

Розділ 3. Тягові приводи
Призначення, класифікація та загальна будова тягових приводів коліс.   §3.1. Назначение, классификация и общее устройство тяговых приводов. Механизмы, осущест

Конструкция опорно-центрового подвешивания тягового двигателя.
В этом случае (см. рис. 3.1,б) появляется необходимый элемент конструкции — полый вал. На рис. 3.14 зубчатое колесо двухсторонней косозубой передачи состоит из двух частей: центра

Конструкция опорно-рамного подвешивания тягового двигателя.
Приводы II класса с компенсирующими связями, расположенными на стороне меньшего крутящего момента. В приводах этой группы компенсирующий элемент — кардан, расположенный между валом якоря и ш

Выбор параметров зубчатого зацепления тягового редуктора.
Здесь и далее ограничимся рассмотрением лишь прямозубых передач. Зубчатую передачу приходится вписывать в ограниченные габариты при заданном межцентровом расстоянии, что существенно затрудняет выбо

Вспомогательные системы энергетической установки.
  §4.3.Топливная система. Назначение системы. Топливная система предназначена для размещения запасов топлива, фильтрации, подогрева и подвода его к энергетическим установкам

Приборы контроля температуры и защиты дизеля от перегрева.
Для контроля температуры предусмотрены электротермометры в кабинах машиниста. Датчики этих термометров установлены на выходном трубопроводе первого контура системы охлаждения. В дизельном отделении

Назначение, типы и компоновочные решения.
Охлаждающее устройство предназначено для отвода теплоты и обеспечения заданного температурного режима дизеля. В тепловозных дизелях только около 40% теплоты, выделяемой при сгорании топлива,

Конструкции, параметры и расчет водо- и масловоздушных секций радиаторов.
Радиаторы тепловоза предназначены для отвода теплоты от воды и масла в атмосферу. Их собирают из отдельных стандартных секций, объединенных подводящими и отводящими коллекторами. Применение стандар

Конструкция, параметры и расчет водомасляных теплообменников.
Водомасляные теплообменники предназначены для охлаждения водой масла дизеля или гидравлической передачи. В современных тепловозах в большинстве случаев применяют двухконтурную систему охлаждения с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги