рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конструкция, параметры и расчет водомасляных теплообменников.

Конструкция, параметры и расчет водомасляных теплообменников. - раздел История, Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів Водомасляные Теплообменники Предназначены Для Охлаждения Водой Масла Дизеля И...

Водомасляные теплообменники предназначены для охлаждения водой масла дизеля или гидравлической передачи. В современных тепловозах в большинстве случаев применяют двухконтурную систему охлаждения с водомасляным теплообменником в контуре охлаждения наддувочного воздуха.

Используемые в тепловозах водомасляные теплообменники различают по схемам движения воды и масла и по конструкции теплопередающей поверхности (охлаждающего элемента). Для максимального теплосъема в заданных размерах в теплообменниках применяют противоточное или противоточно-перекрестное течение жидкостей.

Наиболее простыми (по конструкции и технологии изготовления) и надежными в эксплуатации являются гладкотрубные теплообменники с внешним омыванием трубок маслом, которые широко применяют на тепловозах. Наличие прямых трубок не создает трудностей при очистке внутренних поверхностей и замене поврежденных трубок. Кроме того, трубчатая конструкция позволяет работать при сравнительно высоких давлениях теплоносителей.

Для повышения интенсивности передачи теплоты в теплообменниках необходимо максимально уравнивать термические сопротивления теплоотдачи от масла к поверхности охлаждения и от нее к охлаждающей воде. Выравнивание термических сопротивлений достигается оребрением трубок. В последнее время в отечественных тепловозах применяют охлаждающие элементы из труб с накатанным оребрением (рис. 4.40).

 

 

Водомасляный теплообменник дизеля тепловоза 2ТЭ116 состоит из корпуса 2, передней 11 и задней 1 крышек, охлаждающего элемента 9, кронштейнов 7 и 15. Перегородка 4 крышки 11 разделяет водяную полость теплообменника пополам для обеспечения двух ходов воды для повышения ее скорости в трубках. Охлаждающий элемент 9 состоит из передней 3 и задней 16 трубных досок, в отверстиях которых закреплены оребренные трубки 6 с сегментными перегородками 13, создающими поперечное омывание маслом трубного пучка, что способствует лучшим условиям теплообмена. Заполнители 8 уменьшают зазоры между корпусом и трубным пучком, сокращая переток неохлажденного масла. С этой же целью стык сегментных перегородок и корпуса уплотняют резиновым шнуром 14.

Вода в теплообменник поступает по патрубку 5 передней крышки, проходит по трубкам 6 одной половины охлаждающего элемента (секции), а затем по трубкам другой половины элемента выходит из патрубка 10. Масло в теплообменник входит через отверстие в кронштейне 15, проходит в межтрубном пространстве и выходит через отверстие в кронштейне 7.

Температурные удлинения трубок охлаждающего элемента компенсируются перемещением задней трубной доски 16, которая уплотнена в корпусе 2 и крышке 1 двумя резиновыми кольцами 18. Между кольцами 18 установлено промежуточное кольцо 17 с отверстиями, через которое в случае просачивания будут вытекать вода или масло.

Основные характеристики водомасляных теплообменников приведены в табл. 4.9.

Тепловой расчет водомасляных теплообменников проводят для того, чтобы вычислить поверхности теплообмена элементов, определяющие их основные параметры, а также выбрать оптимальные режимы течения теплоносителей. Расчет базируется на уравнениях теплопередачи (4.17) и теплового баланса (4.18) с использованием экспериментальных критериальных зависимостей для гладкотрубных теплообменников с поперечными сегментными или кольцевыми перегородками. Коэффициент теплопередачи от масла к охлаждающей воде, Вт/(м2·К),

(4.22)

где αвд — коэффициент теплоотдачи от внутренней поверхности трубок к охлаждающей воде; αм — коэффициент теплоотдачи от масла к наружной поверхности трубок; dH, dB — соответственно наружный и внутренний диаметры трубок охлаждающего элемента.

Коэффициент теплоотдачи αвд (Вт/(м2·К)) определяют из критериального уравнения

(4.23)

где — критерий Нуссельта для воды; λвд — коэффициент теплопроводности воды, Вт/(м·К); — критерий Рейнольдса для потока воды; υвд — скорость охлаждающей воды в трубках, значение которой выбирают равным 1,3—2,5 м/с из-за ограничения наименьшей скорости по условию обеспечения турбулентного режима движения теплоносителя и наибольшей — по условиям прочности трубок и затрат мощности на прокачивание воды; υвд — коэффициент кинематической вязкости воды, м2/с; — критерий Прандтля для воды; свд — удельная теплоемкость воды, кДж/(кг·К); ρвд — плотность воды, кг/м3. Физические характеристики воды определяют при средней температуре tвд.сp.

 

 

Коэффициент теплоотдачи αм находят из критериального уравнения

(4.24)

где — критерий Нуссельта для масла; λм — коэффициент теплопроводности масла, Вт/(м К); Rем, Рrм — критерии соответственно Рейнольдса и Прандтля, отнесенные к средней температуре масла; Рrт — критерий Прандтля для масла, отнесенный к температуре стенки трубки; Вк — безразмерный коэффициент, зависящий от наружного диаметра трубок dН, минимального расстояния δ между поверхностями соседних трубок и отношения внутреннего диаметра кожуха D к расстоянию между перегородками l (для dН = 10 мм и δ = 3 мм Вк определяют по кривой на рис. 4.41).

Площадь сечения (м2) для прохода масла в пространстве между трубками охлаждающего элемента

(4.25)

где GМ — расход масла через теплообменник, кг/с; ρм — плотность масла при средней температуре, кг/м3; υм — средняя скорость масла в межтрубном пространстве, которую принимают в диапазоне 1,2—2 м/с, ограниченном сверху по условиям резкого увеличения гидравлических сопротивлений масляного тракта.

Из условия равенства сечений для прохода масла в межтрубном пространстве между перегородками и над ними (рис. 4.42) площадь сегмента перегородки

(4.26)

где t1 = dН + δ — шаг разбивки трубок.

 

 

 

 

Значения центрального угла φ сегмента перегородки в зависимости от отношения f/D2:

Расчетный температурный напор между маслом и водой

(4.26)

где —температура масла соответственно на входе в теплообменник и на выходе из него; — соответственно воды на входе и выходе из теплообменника и средняя.

Расчетную величину поверхности охлаждения теплообменника определяют из уравнения теплопередачи

(4.27)

где Q— количество теплоты, отводимое маслом.

При тепловом расчете необходимы исходные данные: количество теплоты, отводимое маслом, Вт; значения расходов масла и воды через теплообменник (соответственно Gм и Gвд), кг/с, известные из технической характеристики насосов дизеля; температуры масла на входе t'M и выходе t''M теплообменника, также известные из технической характеристики дизеля; температура воды на входе теплообменника t'ВД принимается в соответствии с выбранной ранее схемой движения воды через теплообменники в контуре. Перед расчетом выбирают наружный dи и внутренний dв диаметры трубок охлаждающего элемента, разбивку трубок в трубной доске, которая обусловлена наименьшим расстоянием между соседними трубками 5; а также число ходов охлаждающей воды zвд.

После теплового выполняют гидродинамический расчет теплообменника, который заключается в определении гидравлических сопротивлений масляного и водяного трактов. Полное гидравлическое сопротивление (Па) масляного тракта теплообменника

(4.28)

 

где тT — количество рядов трубок, перпендикулярных к потоку масла; С, р — экспериментальные константы. Для теплообменников с сегментными перегородками при dН = 10 мм и δ = 3 мм в диапазоне Rем = 10—250 константа р = 0,65. Значение С принимают по графику (рис. 4.41).

Гидравлическое сопротивление водяного тракта теплообменника (Па)

(4.29)

где L—полная длина трубок, м; βТР — коэффициент, зависящий от средней температуры tвд.ср и скорости υвд воды (рис. 4.43).

Расходы мощности (Вт) на прокачивание воды и масла через теплообменники:

(4.30)

 

где ηВД, ηм — КПД соответственно водяного и масляного насосов.

Тепловозные водомасляные теплообменники включают в водяной контур последовательно с радиатором, поэтому их показатели зависят от соотношений реализуемых температурных напоров.

 

Системи повітропостачання і повітряного охолоджування.

Очисники повітря.

 

§4.7. Конструкция охладителей наддувочного воздуха.

Охладители (теплообменники) наддувочного воздуха. Температура наддувочного воздуха дизеля оказывает большое влияние на его экономичность и надежность. Охлаждение наддувочного воздуха применяют для повышения мощности дизелей на единицу объема рабочего цилиндра, увеличения массы воздуха, подаваемого за рабочий цикл, и снижения средней температуры цикла.

Проведенные экспериментальные и теоретические исследования выявили, что для дизеля каждого типа и заданного режима работы существует оптимальная по удельному расходу топлива температура наддувочного воздуха перед впускными органами. Поэтому тепловозные дизели оборудуются устройствами для получения оптимальных значений температур наддувочного воздуха. При номинальном и близких к нему режимах работы дизеля наддувочный воздух необходимо охлаждать, а при режимах холостого хода и малых нагрузок — подогревать.

На серийных тепловозах наддувочный воздух охлаждается в водовоздушных теплообменниках, включенных в самостоятельный контур циркуляции охлаждающей воды или в контур воды, охлаждающей масло дизеля. Воздухоохладители, располагаемые обычно на дизеле, отличаются небольшими размерами и массой.

На некоторых тепловозах применяют системы с охлаждением наддувочного воздуха атмосферным. Охлаждение атмосферным воздухом проще. В системе вместо двух теплообменников (для охлаждения воздуха водой и для охлаждения воды атмосферным воздухом) устанавливают один воздуховоздушный теплообменник, в котором реализуется весь температурный напор между наддувочным и атмосферным воздухом. Однако воздуховоздушные теплообменники, вследствие значительных размеров, не нашли широкого применения в тепловозах большой мощности. Такая система охлаждения была применена на опытном тепловозе ТЭП75.

Применяемые на тепловозах системы спроектированы и рассчитаны для охлаждения наддувочного воздуха при работе дизеля в номинальном режиме и не удовлетворяют условию получения оптимальных температур воздуха при всех режимах его работы. Оптимизацию температур наддувочного воздуха в зависимости от режима работы дизеля можно осуществить при помощи систем, регулирующих поступление воды в теплообменник из различных водяных контуров, а также использующих теплоту выпускных газов дизеля для подогрева воздуха в теплообменниках.

По типу оребрения поверхности, омываемой воздухом, теплообменники бывают пластинчатыми, круглотрубными с накатанным или с проволочным оребрением и плоскотрубными с коллективным оребрением. Предпочтительнее круглотрубные поверхности с накатанным или проволочным оребрением, так как они обладают высокой надежностью и удобны в эксплуатации и при ремонте.

Водовоздушный теплообменник для охлаждения наддувочного воздуха дизеля 2А-5Д49 тепловозов ТЭП70 и 2ТЭ116 (рис. 4.43) установлен на торце дизеля на кронштейне. Состоит из сварного корпуса 12, патрубка 13, верхней 2 и нижней 6 крышек и охлаждающей секции. У последней есть верхняя 4 и нижняя 11 трубные доски, в отверстия которых установлены оребренные трубки 3. Внутри трубок образуется водяная, а между ними — воздушная полость.

Вода поступает в теплообменник по патрубку Е нижней крышки, обходит перегородку 5, которая делит водяную полость секции пополам, проходит по трубкам одной, а затем второй половины секции и выходит через патрубок С. Пар из водяной полости отводится через трубку 1, установленную в верхней крышке.

Наддувочный воздух поступает к теплообменнику по патрубку 13, охлаждается в межтрубном пространстве и по каналу Ж в кронштейне поступает в ресивер блока цилиндров.

 

 

 

Оценку эффективности охлаждающих устройств тепловозов выполняют по натуральным и удельным показателям, а также на основе технико-экономических расчетов.

К числу натуральных показателей относят: количество теплоты, рассеиваемой системой охлаждения; мощность для функционирования системы; общую массу устройств; расход цветных металлов; величину теплопередающей поверхности; объем, занимаемый радиаторами; величину фронтальной поверхности радиаторов и т. п.

При сопоставлении систем охлаждения в целом и отдельных теплообменников получили распространение удельные показатели — энергетический, объемный и массовый.

Энергетический показатель

(4.31)

где Q— количество теплоты, передаваемой в теплообменнике, Вт; Р— мощность для функционирования теплообменника, Вт; Δt — средняя разность температур между теплоносителями в пределах теплообменника, °С; F— расчетная поверхность теплопередачи, м2.

Объемный показатель

(4.32)

где Vт — объем, занимаемый теплообменником, м3.

Массовый показатель

(4.33)

где т — масса теплообменника, кг.

Для сравнения радиаторов используют также показатель тепловой напряженности площади фронта

(4.34)

где Fфр — фронтальная поверхность радиатора, м2.

Удельные показатели являются более общими по сравнению с натуральными, так как позволяют проводить сопоставление отдельных теплообменников с различными формами поверхностей, разными значениями передаваемой теплоты и т.д. В то же время оптимальный теплообменник или оптимальная система охлаждения не могут быть выбраны на основании только удельных технических показателей, так как они не отражают многих эксплуатационных и экономических факторов. В качестве основного технико-экономического показателя, характеризующего систему охлаждения, принимают сумму годовых приведенных расходов, отнесенных к теплорассеивающей способности системы. Удельные приведенные годовые расходы, руб/кДж,

(4.35)

где Eн = 0,1 — нормативный коэффициент эффективности для железнодорожного транспорта; К3 — капитальные затраты изготовления охлаждающего устройства, руб.; С— годовые эксплуатационные затраты, зависящие от системы охлаждения тепловоза, руб.; Q— количество теплоты, рассеиваемое в течение года, кДж.

Капитальные затраты изготовления систем охлаждения

KЗ= KЗ1 + КЗ2, (4.36)

где КЗ1 — капитальные затраты на теплообменники (секции радиатора, водомасляные теплообменники, водовоздушные теплообменники наддувочного воздуха), вентиляторы и насосы, входящие в систему охлаждения; КЗ2 — капитальные затраты на трубопроводы, задвижки, вентили, систему автоматического регулирования и т.д.

Эксплуатационные расходы на систему охлаждения

С = Стс + Срто + Сам + Сдпт + Ст, (4.37)

где Стс — расходы на топливо и смазку, потребляемые двигателем тепловоза для получения мощности на функционирование системы охлаждения; Срто — расходы на ремонты и технические осмотры охлаждающего устройства; Сам — амортизационные расходы на систему охлаждения; Сдпт — расходы на содержание дополнительного парка тепловозов, необходимого при уменьшении полезной мощности двигателя, используемой для целей тяги и для работы системы охлаждения; Ст — затраты на транспортировку системы охлаждения на тепловозе.

 

§4.8. Системы охлаждения тяговых электрических машин и аппаратов тепловозов.

Назначение систем охлаждения.При работе тяговых электрических машин часть подведенной к ним энергии преобразуется в активных элементах (в обмотках и в магнитной системе) в тепловую, что ведет к нагреванию машин и повышению температуры изоляции их обмоток.

Тепловое состояние электрической машины характеризуется превышениями τ температур ti- ее обмоток над температурой tо окружающего воздуха, т.е.

Увеличение температур обмоток ускоряет старение электроизоляционных материалов. Для каждого класса этих материалов существует определенный температурный уровень, превышение которого на 5—10 °С приводит к сокращению срока службы изоляции в 2 раза. Предельные допустимые превышения ti mах температур обмоток строго ограничены стандартами в соответствии с классами изоляции значениями, соответствующими длительному режиму и температуре охлаждающего воздуха 25 °С:

Класс изоляции

– Конец работы –

Эта тема принадлежит разделу:

Модуль №1.2 кредита. Історія розвитку локомотивів паровози, тепловози, електровози тощо. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів

Модуль кредита... Історія розвитку локомотивів паровози тепловози електровози тощо Класифікація і типи основних вузлів елементів...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конструкция, параметры и расчет водомасляных теплообменников.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо.).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі Розвиток паровой тягі. Роль російських вчених у будуванні паровозів. Електровоз

Тягові приводи. Компоновка та системи локомотивів.
Розділ 3. Тягові приводи Призначення, класифікація та загальна будова тягових приводів коліс.   Електричний привід колісних пар. &nb

Розділ 1. Історія розвитку локомотивів (паровози, тепловози, електровози тощо).
Вступ: предмет та задачі вивчення дисципліни, її роль у підвищенні кваліфікації фахівця і в майбутній роботі. Курс «Локомотиви магістрального транспорту(загальна будова та їх взаємо

Предшественник.
В марте 1946 советское правительство разместило заказ фирме General Electric (GE) на изготовление 12 восьмиосных электровозов. Согласно техническому заданию, в часовом режиме мощность должна была с

Опытные электровозы Н8.
В 1952 году под руководством главного конструктора НЭВЗа Б. В. Суслова началось проектирование нового электровоза, а в марте 1953 года уже был изготовлен первый опытный восьмиосный электровоз Н8

Серийные электровозы
В 1956 году начался серийный выпуск электровозов на Новочеркасском электровозостроительном заводе. Для увеличения выпуска электровозов к программе их выпуска решено было подключить Тбилисский элект

Модернизации.
На электровозах ВЛ8-185, 186 и 187 в системе рессорного подвешивания были поставлены резиновые элементы, которые уменьшили тряску и сделали ход электровоза более плавным. Однако эти элементы работа

Предпосылки к появлению электровоза.
Ещё в конце 1920-х гг., когда только начинали электрифицировать направление через Сурамский перевал, многие специалисты хорошо понимали, что в будущем электрическая тяга на постоянном токе с номина

Модификации.
ВЛ60П-001. В конце 1961 года Новочеркасский электровозостроительный завод выпустил электровоз ВЛ60П-001, предназначенный для пассажирской службы. На этом электровозе устано

ВЛ60ПК (ВЛ60КП).
    Электровозы ВЛ60П, о

Грузовые опытные двенадцатиосные электровозы ВЛ85.
Все построенные до 1983 г. для железных дорог Советского Союза грузовые электровозы являются шести- или восьмиосными и имеют две кабины машиниста, причем два электровоза ВЛ80С могут упра

Устройство определения рода тока.
       

Электровоз ЧС2
(заводские обозначения — 25Ео, 34Е; прозвище — «Чебурашка») — магистральный пассажирский электровоз постоянного тока, строившийся на заводах Шкода с 1958 по 1973 год для железных дорог Советского С

Серийные электровозы ЧС2.
С учетом опыта испытаний и эксплуатации электровозов ЧС3, ЧС2-001, ЧС2-002 заводы Шкода спроектировали и изготовили в 1961 году первые электровозы заводской серии 34E0.

Электровоз ЭП1
(Электровоз Пассажирский, тип 1) — пассажирский электровоз переменного тока, серийно выпускающийся НЭВЗ до 2007 года, с появлением электровоза ЭП1М, выпуск прекратился.  

Электровозы серии Э5К
(Э — электровоз, 5 — номер модели, К — коллекторные тяговые электродвигатели) предназначены для вождения грузовых, пригородных и вывозных поездов на железных дорогах, электрифицированных на однофаз

Электровоз 2ЭС5К.
Индекс С в наименовании, от слова «секционный»

Электровоз 3ЭС5К.
В 2007 году сертифицирована бустерная (промежуточная) секция для электровоза, которая позволяет увеличить его мощность в полтора раза и использовать для транспортировки сверхтяжелых составов или ра

Механическая передача.
Механическая передача включает фрикционную муфту, коробку передач с реверс-редуктором; а также карданные валы с осевыми редукторами или отбойный вал с дышловой передачей. М. П. обладает относительн

Электрическая передача.
В электрическая вал дизеля вращает тяговый генератор , питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре— при индивидуальном приводе— через осевой р

Гидравлическая передача.
Гидравлическая передача включает собственно гидропередачу и механическую передачу на колесные пары (см. выше). В гидропередаче крутящий момент преобразуется с помощью гидромуфт и гидротрансформатор

СМЕ (СМЕТ).
Тепловозы в СССР выпускались в составе одной, двух, реже— трёх или четырёх секций. Мощность одной секции тепловоза может составлять до 6600 л.с. (американский EMD DDA40X), но у серийных тепловозов

Тепловоз ТЭП150.
      Односекционный

Тепловоз ТЭМ103.
    Основ

Розділ 2. Класифікація і типи основних вузлів , елементів та пристроїв локомотивів.
  Конструкція головних несучих рам і їх елементів. Кузови ненесучого типу. Несучі кузови і особливості їх роботи.   §2.1. Типы рам и кузо

Вертикальные силы.
А. Вес экипажа локомотива (включает силу тяжести его частей и 2/3 запаса топлива и песка). Б.Вес оборудования (включает нагружающие расчитываемый объект с

Боковые силы.
A. Центробежная сила. Определяется отдельно для кузова и тележек исходя из непогашенного ускорения 0,7м/с2. Равнодействующая этой силы прикладывается в центре тяжести.

Основные материалы для изготовления кузова и рам тележек.
Для изготовления несущих элементов кузова, главной рамы и рам теле-жек рекомендуется использовать малоуглеродистые и низколегированные спокойные стали, не склонные к хрупкому разрушению при темпера

Расчеты рам и кузовов на статическую нагрузку.
Расчеты прочности конструкций экипажной части локомотивов в настоящее время в основном выполняются методом конечных элементов (МКЭ). Для этого используют соответствующие программные комплексы от не

Особенности работы обшивки и стержневых элементов конструкции на устойчивость.
В расчетах надо предусматривать оценку коэффициента запаса устойчивости по формуле   (2.9) где σк

Расчеты усталостной прочности.
Расчетам на усталость подвергаются: –рамы тележек, надрессорные балки, промежуточные рамы, корпуса букс; –хребтовые, продольные боковые, основные поперечные и шкворневые балки, шк

Тепловоз 2ТЭ116.
Тепловоз 2ТЭ116 состоит из двух одинаковых однокабинных секций (рис. 2.18), управляемых с одного поста кабины любой секции. При необходимости каждая секция может быть использована как самостоятельн

Тепловоз 2ТЭ10М.
Тепловозы типа ТЭ10М выпускаются производственным объединением «Ворошиловградтепловоз» в двух исполнениях: двухсекционные общей мощностью 4412 кВт —2ТЭ10М и трехсекционные общей мощностью 6618 кВт

Тепловоз ТЭП1150.
Магистральный пассажирский тепловоз ТЭП150 мощностью 3100 кВт с электрической передачей переменно-постоянного тока, с поосным регулирова-нием силы тяги, электрическим тормозом и энергоснабжением па

Тепловоз ТЭП70.
Увеличение веса пассажирских поездов и скорости их движения потребо-вало применения на некоторых неэлектрифицированных линиях двухсекцион-ных тепловозов 2ТЭП60. При этом удвоение мощности и веса ло

Электровоз ВЛ80к.
Электрическое и пневматическое оборудование располагают в кабинах, кузовах, под кузовами и на крышах обеих секций электровоза (рис. 2.23—2.27). В кабинах обоих кузовов расположение оборудо

Электровоз ВЛ10.
К началу 1959 года СССР вышел на первое место в мире по протяженности электрифицированных линий. Работали они в то время на постоянном токе, что вполне соответствовало мировым стандартам (около 70%

Устройство рессорного подвешивания.
У отечественных тепловозов широкое распространение получило одноступенчатое сбалансированное (четырехточечное) рессорное подвешивание из листовых рессор и спиральных пружин (рис. 2.46). На

Основные характеристики рессорного подвешивания.
К основным характеристикам рессорного подвешивания относят жесткость ступеней, суммарную жесткость, степень демпфирования, распределение демпфирования по ступеням. Часто вместо жесткости указывают

Жесткость сложной системы подвешивания.
Всистеме подвешивания упругие элементы могут быть соединены параллельно, последовательно или сложным образом в отдельную точку подвешивания. Жесткость системы подвешивания определяется на основе пр

Конструкция тяговых устройств.
В отечественном локомотивостроении наибольшее распространение получили шкворневые тяговые устройства. Тяговое устройство с жестким шкворнем применялось на магистральных тепловозах 2

Розділ 3. Тягові приводи
Призначення, класифікація та загальна будова тягових приводів коліс.   §3.1. Назначение, классификация и общее устройство тяговых приводов. Механизмы, осущест

Конструкция опорно-центрового подвешивания тягового двигателя.
В этом случае (см. рис. 3.1,б) появляется необходимый элемент конструкции — полый вал. На рис. 3.14 зубчатое колесо двухсторонней косозубой передачи состоит из двух частей: центра

Конструкция опорно-рамного подвешивания тягового двигателя.
Приводы II класса с компенсирующими связями, расположенными на стороне меньшего крутящего момента. В приводах этой группы компенсирующий элемент — кардан, расположенный между валом якоря и ш

Выбор параметров зубчатого зацепления тягового редуктора.
Здесь и далее ограничимся рассмотрением лишь прямозубых передач. Зубчатую передачу приходится вписывать в ограниченные габариты при заданном межцентровом расстоянии, что существенно затрудняет выбо

Вспомогательные системы энергетической установки.
  §4.3.Топливная система. Назначение системы. Топливная система предназначена для размещения запасов топлива, фильтрации, подогрева и подвода его к энергетическим установкам

Приборы контроля температуры и защиты дизеля от перегрева.
Для контроля температуры предусмотрены электротермометры в кабинах машиниста. Датчики этих термометров установлены на выходном трубопроводе первого контура системы охлаждения. В дизельном отделении

Назначение, типы и компоновочные решения.
Охлаждающее устройство предназначено для отвода теплоты и обеспечения заданного температурного режима дизеля. В тепловозных дизелях только около 40% теплоты, выделяемой при сгорании топлива,

Конструкции, параметры и расчет водо- и масловоздушных секций радиаторов.
Радиаторы тепловоза предназначены для отвода теплоты от воды и масла в атмосферу. Их собирают из отдельных стандартных секций, объединенных подводящими и отводящими коллекторами. Применение стандар

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги