рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Установившийся режим работы электропривода

Установившийся режим работы электропривода - раздел История, Основные сведения. История развития ЭП   Рисунок 2.8 – Режимы...

 
Рисунок 2.8 – Режимы работы электродвигателей

Механические характеристики позволяют просто и наглядно определить координаты установившегося (статического) режима.

Работе электрического двигателя и производственного механизма в установившемся режиме соответствует равно­весие момента сопротивления механизма и вращающего момента двигателя т. е. М=Мс. Тогда скорость установившегося режима определяется, как ордината пересечения характеристик двигателя и производственного механизма.

Оси координат разделяют поле на четыре квадранта. Любая точка I и III квадрантов соответствует двигательному режиму работы электрической машины (за исключением осей координат). При этом мощность машины Р>0 и электрическая энергия преобразуется в механическую. Точки квадрантов II и IV, соответствуют генераторному режиму работы электрической машины Р<0. В этом случае двигатель преобразует механическую энергию в электрическую, развивая тормозной момент. Генераторный режим работы двигателя является режимом электрического торможения

Генераторных режимов может быть несколько в зависимости от того, как используется преобразованная электрическая энергия. Классификация следующая:

1. Генераторный режим с отдачей энергии в сеть — режим рекуперативного торможения. В этом случае пре­образованная электрическая энергия за вычетом потерь отдается машиной в сеть. Баланс мощностей выражается следующим образом:

где Рм - механическая мощность на валу двигателя;

Рээлектрическая мощность, поступающая в сеть;

ΔР — результирующая мощность потерь в силовых цепях двигателя.

Переход из двигательного режима в режим рекуперативного торможения возможен при увеличении скорости двигателя сверх скорости идеального холостого хода, когда М = 0. Получение тормозного момента в дви­гателе с одновременной отдачей им энергии в сеть позво­ляет считать данный режим торможения как экономичный.

2. Режим торможения противовключением. В этом случае электрическая машина потребляет как механиче­скую энергию с вала, так и электрическую энергию из сети. Суммарная энергия расходуется в силовых цепях двигателя, т. е. PM +Pэ = ΔP.

Этот режим характеризуется большими электрическими потерями.

3. Режим динамического торможения. В этом случае на потери в силовой цепи двигателя расходуется только преобразованная электрическая энергия. Энергию из сети машина не получает, т. е. Рм=ΔР. Для осуществления данного режима двигатель обычно отключают от сети и в его силовую цепь вводят дополни­тельное сопротивление. В отдельных случаях электриче­ская машина, подключенная к питающей сети, может не обмениваться с ней активной мощностью, а потреблять механическую мощность с вала и преобразо­вывать ее в потери, т. е. также работать в режиме динами­ческого торможения.

Граничные режимы, отделяющие двигательные режимы от генераторных, соответствуют определенным точкам на координатных осях. Там, где М = 0 при , имеет место идеальный холостой ход двигателя. Чтобы машина могла работать в данном ре­жиме, требуется к ее валу подвести небольшую мощность, компенсирующую механические потери. При ω0=0 и имеет место так называемый режим короткого замыкания. В этом случае механическая мощность равна нулю, а потребляемая из сети электрическая энергия полностью расходуется на потери.

Изменение момента сопротивления на валу двигателя приводит к тому, что скорость двигателя и момент, который он развивает, могут автоматически изменяться, и привод будет продолжать устойчиво работать при другой скорости с новым значением момента.

Для восстановления равновесия между изменившимся моментом сопротивления и моментом двигателя во всех неэлектрических двигателях требуется участие специаль­ных регуляторов, которые воздействуют на источник энергии, увеличивая или соответственно уменьшая подачу воды, топлива или пара. В электрических двигателях роль автоматического регулятора может выполнять ЭДС двига­теля. Эта особенность электродвигателей автоматически поддерживать равновесие системы при изменяющемся мо­менте сопротивления является весьма ценным свойством.

 
Рисунок 2.9 – Характеристики двигателя и механизма
Начало формы Конец формы

На рисунке приведены механическая характеристика 3 двигателя постоянного тока независимого возбуждения и две характеристики 1 и 2 производственного механизма, например конвейера, приводимого в движение этим двигателем. Механические характеристики производственного механизма для удобства изображаются в первом квадранте, хотя момент сопротивления имеет отрицательное значение (для принятого положительного направления моментов)

Характеристика 1 соответствует моменту сопротивле­ния М1 при холостом ходе конвейера. Характеристика 2 получается при большом моменте сопротивления М2 после, того, как на конвейер положены транспортируемые им детали. Вначале при холостом ходе конвейера М = M1 двигатель работает со скоростью ω1. С увеличением на­грузки двигатель тормозится, скорость его снижается, благодаря чему уменьшается ЭДС. При уменьшении ЭДС возрастают ток в якорной цепи двигателя и момент, раз­виваемый двигателем. Рост момента двигателя продол­жается до тех пор, пока не наступит равновесие моментов М = М2 (точка ω2). Эта новая точка также является общей для механической характеристики конвейера (2) и механической характеристики электродвигателя (3). Для лучшего усвоения посмотрите демонстрацию.

Рассмотренные условия работы электропривода в уста­новившемся режиме характеризуют статическую устойчивость привода, когда изменение во вре­мени скорости и момента происходит относительно медленно в отличие от динамической устойчивости, имеющей место при переходных режимах.

– Конец работы –

Эта тема принадлежит разделу:

Основные сведения. История развития ЭП

Общая структура ЭП... Требования к ЭП... Классификация ЭП...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Установившийся режим работы электропривода

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая структура электропривода
Нельзя представить себе ни одного современного про­изводственного механизма, в любой области техники, кото­рый не приводился бы в действие автоматизированным электроприводом. В электроприводе основ

Требования к электроприводу
Сформулируем общие требования к ЭП, как к системе, ответственной за управляемое электромеханическое преобразование энергии, т.е. определим главные показатели, которые характеризуют ЭП. 1.

Состав механической части электропривода
Обычно двигатель приводит в действие производственный механизм через систему передач, отдель­ные элементы которой движутся с различными скоростями. Часто в рабочих механизмах один из элементов сове

Механические характеристики производственных механизмов и электродвигателей
При рассмотрении работы электродвига­теля, приводящего в действие производственный меха­низм, необходимо выявить соответствие механических характеристик двигателя характеристике производственного м

Статическая устойчивость ЭП
Механические характеристики двигателей и производственных механизмов должны подбираться так, чтобы обеспечивать устойчивую работу привода в установившемся режиме. В статически устой

Переходные режимы работы ЭП
Переходным режимом электропривода называют ре­жим работы при переходе от одного установившегося со­стояния к другому, когда изменяются скорость, момент и ток. Причинами возникновения перех

Время ускорения и замедления привода
Поскольку периоды разгона и торможения ЭП обычно снижают эффективность работы механизма, их стремятся сокращать. Особенно важно такое сокращение для приводов механизмов, работающих с частыми пускам

Основные уравнения для ДПТНВ
Напряжение, подводимое к якорной цепи двигателя, в уста­новившемся режиме уравновешивается падением напряжения на сопротивлениях цепи якоря и противо э.д.с. якоря, которая наво­дится в обмотке якор

Построение механической характеристики
Естественная механическая и скоростная характеристики двигателя постоянного тока независимого возбуждения имеют вид прямых, пересекающих ось ординат, поэтому они могут быть построены по двум точкам

Построение динамических характеристик
При скорости идеального холостого хода, когда ток в якорной цепи равен нулю, ЭДС якоря, направленная навстречу приложенному     Рисунок 3.3 - Динамическая харак

Уравнение характеристик двигателя в относительных единицах
Для сравнения характеристик двигателей различной мощности удобно представить характеристики двигателя в относительных единицах. При этом принимаются следующие базисные величины: Uб

Основные показатели регулирования угловой скорости электроприводов
Регулированием скорости называется принудительное изменение скорости электропривода в зависимости от тре­бований технологического процесса. Понятие регулирования скорости не следует смешивать с ест

Регулирование скорости ДПТ НВ
Из уравнения скоростной или механической характеристик, вытекает, что возможны три способа регулирования угловой скорости двигателя 1) Изменением напряжения на якоре 2) Изменение

Рекуперативное торможение (генераторное торможение с отдачей энергии в сеть)
Режим рекуперативного генераторного торможения имеет место, когда скорость двигателя превышает скорость холостого хода ω>ω0 . При этом э.д.с. якоря Ея превышае

Динамическое торможение
Происходит при отключе­нии якоря двигателя от сети и замыкании его на резистор, поэтому иногда его называют реостатным торможением. Обмотка возбуждения при этом должна оста­ваться присоединенной к

Торможение противовключением
(Генераторный ре­жим работы последовательно с сетью)   3.10.3.1 За счёт изменения полярности приложенного напряжения Изменение направления вращения

Характеристики двигателя с последовательным возбуждением
  Рисунок 3.37 - Схема ДПТ последовательного возбуждения   Обмотка возбуждения включена последовательно с обмоткой якоря, а следовательно ток возбуждения и пото

Построение характеристик
Для получения общего характера зависимостей можно воспользоваться кусочно- линейной апроксимацией кривой намагничивания двигателя Ф*=f(Iя*). Первый участок I

Регулирование скорости ДПТПВ изменением сопротивления в цепи якоря
Рассмотрим характерные точки при введении сопротивлений в якорную цепь.   Рисунок 3.40 - Механические характеристики ДПТПВ прт реостатном регулировании  

Виды схем замещения
Математическое описание физических процессов в асинхронном двигателе в установившихся процессах выполняют на основе эквивалентных схем замещения. Это делают для одной фазы (ввиду симметричности обм

Установившиеся процессы АД на основе Г-образной схемы замещения.
Упрощенная схема замещения одной фазы асинхронного двигателя приведена на рисунке 4.2, где в обозначениях коэффициенты с индексом 1 относятся к обмотке статора (первичной цепи), а с индексом 2 – к

Вывод уравнения механической характеристики
Электромеханической характеристикой АД называют зависимость между угловой скоростью ротора ω (или скольжением) и током статора I1 или током ротора I’

Механические характеристики асинхронного двигателя в тормозных режимах
В п. 4.3 были рассмотрены механические характеристики асинхронной машины, работающей в двигательном режиме. Однако асинхронный двигатель может работать и в тормозных режимах: рекуперативном, при то

Схемы динамического торможения асинхронного двигателя
На рис. 4.7, а-е представлены различные схемы включения обмоток статора при питании их от источника постоянного тока. В схемах на рис. 4.7, д, е нагрузка всех фаз обмотки статора равномерна, однако

Пуск асинхронного двигателя с фазным ротором
Для пуска асинхронного двигателя с фазным ротором нужно принять меры для увеличения пускового момента и снижения пусковых токов. С этой целью в цепь ротора включают добавочное активное сопротивлени

Расчет и построение пусковых характеристик
Для расчета пусковых характеристик нужно задаться значениями момента , при котором происходит переключение ступеней пускового реостата о.е. Пусковые значения момента , (см. рис. 4.13) нахо

Реостатное регулирование скорости по цепи ротора
Реостатный способ пуска заключается во введении резисторов для асинхронных двигателей с короткозамкнутым ротором (АДсКЗ) в цепь статора, а для асинхронных двигателей с фазным ротором – в цепь ротор

Реостатное регулирование по цепи статора
Допустимый момент асинхронного двигателя с короткозамкнутым ротором при реостатном регулировании по цепи статора резко падает (как это показано штриховой линией на рис. 4.17, б), так как зна

Общие принципы
Если регулировать напряжение, подводимое к трем фазам статора асинхронного двигателя, то можно, отвлекаясь от влияния параметров регулирующего устрой­ства на характеристики двигателя, изменять макс

Регулирование скорости изменением напряжения АД с короткозамкнутым ротором
Механические характеристики двигателя с короткозамкнутым ротором при регулировании напряжения на статоре приведены на рис. 4.18. Из этих характеристик следует, что пределы регулирования весьма огра

Регулирование скорости изменением напряжения АД с фазным ротором
Лучшее использование двигателя и более благоприят­ные характеристики могут быть получены, если применить двигатель с фазным ротором, в роторную цепь его включить дополнительный нерегулируемый резис

Импульсное изменение напряжения
Для регулирования напряжения используются как тиристорные регуляторы напряжения с фазовым управле­нием, так и реакторы насыщения, автотрансформаторы и импульсные, например тиристорные или контактны

Общие принципы
Из выражения для угловой скорости асин­хронного двигателя:   (4.28)   следует, что угловую скорость можно регулировать, изме­няя число пар полюсов

Соотношение магнитных индукций и моментов
  Таблица 4.2 Соотношение магнитных индукций № рис. Двойное число полюсов (обозначение II, рис.4.40) Одинарное число пол

Механические характеристики при регулировании
Переключение обмоток статора по схемам, изображен­ным на рис. 4.23, г и д, дает возможность получить момент, вдвое больший при двойном числе полюсов по сравнению с одинарным. Это озна

Особенности регулирования
Практически диапазон регулирования не превышает 6:1 (3000 : 500 об/мин). Направление регулирования при этом способе является условным и зависит от того, при каком числе полюсов угло­вая ск

Частотное регулирование угловой скорости асинхронного электропривода
    Рисунок 4.27 - Схема АД при частотном регулировании   Частотный способ является одним из наиболее перспективных и широко используемых способов

Каскадные схемы
Параметрические способы регулирования скорости АД (кроме изменения числа пар полюсов) имеют низкие энергетические по­казатели, так как с увеличением диапазона регулирования растут потери скольжения

Электромеханический каскад
Электромеханический каскад (рис. 4.30), потребляя из сети электрическую мощность передает на вал двигателя М механическую мощность за вычетом потерь мощности в статоре и мощности ско

Машинно-вентильные и вентильные каскады
По элементному составу различают ма­шинные, вентильно-машинные электромеха­нические и электрические каскады, а также вентильные электрические каскады. На рис. 4.31 приведены схемы машинно-вен­тильн

Механические характеристики синхронного двигателя
  Рисунок 4.35 – Схема синхронного двигателя   Схема включения синхронного двига­теля приведена на рис. 4.35. Этот двигатель имеет обычный по своему конструктив

Векторная диаграмма синхронного двигателя
Рассмотрим упро­щенную векторную диаграмму синхронного двигателя. На этой диаграмме приняты следующие обозначе­ния: I - вектор фазного тока статора; Е, Uс — векторы

Угловая характеристика синхронного двигателя
Зависимость момента синхронного двигателя от угла внутрен­него сдвига фаз приведена на рис. 4.39. Наибольшего значения момент двигателя достигает при угле θ = π/2. Эта величина харак­тери

Регулирование скорости синхронного электропривода
Вентильным двигателем (ВД) называется устройство, состоящее из электродвигателя переменного тока (по конструкции аналогичного синхронному) и вентильного коммутатора (преобразова­теля частоты

Допущения при изучении процессов нагрева двигателей
Условия нагрева отдельных частей машины различны. Большему нагреву подвергаются части обмоток, расположенные во внутренних областях машины. Так же неодинаково и выделение теплоты в различных режима

Вывод уравнения нагрева
Уравнение теплового баланса двигателя при неизменной нагрузке имеет вид:   ΔРdt = Aτdt + Cdτ, (5.1)   где ΔР - количество теплоты (

Кривые нагрева и охлаждения
На рис. 5.2 даны кривые, отображающие процесс охлаждения двигателя. Здесь кривая 1 соответствует уменьшению нагрузки, а кривые 2 и 3 – отключению двигателя от сети. &n

Коэффициент ухудшения теплоотдачи
У самовентилируемых двигателей открытого исполнения малой и средней мощности постоянная времени составляет около 1 часа, у двигателей закрытого типа большой мощности – 3-4 часа. При отключении само

Номинальные режимы работы электродвигателей
Под номинальным режимом работы элек­трической машины понимается режим, для которого она предназначена предприятием-изготовителем (ГОСТ 17154-71). Для этого режима в каталогах и паспорте двигателя у

Основные положения выбора двигателей
Род тока для электропитания двигателя (постоянный ток, переменный ток трех- или однофазный промышленной или повышенной частоты) определяется выбором типа двигателя: двигатель постоянного или переме

Рекомендации по выбору двигателей
Для электропривода с глубоким регулированием частоты вращения приходится делать выбор между двигателем постоянного тока и асинхронным двигателем с короткозамкнутым ротором при его питании oт регули

Определение расчетной мощности и выбор двигателя
  Расчетная мощность двигателя Pрасч (кВт), требуемая для электропривода, определяется величинами статического нагрузочного момента Mс (Н м) на вал

Расчет мощности для некоторых производственных механизмов
Ниже приведены упрощенные формулы для определения расчетной мощности двигателей некоторых типовых установок, работающих в продолжительном режиме S1 с неизменной нагрузкой. Центробежные вен

Расчет мощности двигателя для продолжительного режима
Выбор конкретного типоразмера двигателя ведется на основании технических требований к электродвигателю: расчетной мощности, требуемой частоты вращения, режима работы, допустимых значений воздействи

Расчет мощности двигателя для кратковременного режима
Задача расчета сводится к определению мощности двигателя , способного выдержать перегрузку Pкр, работая в кратковременном режиме в течение времени tкр (см. рис.

Расчет мощности двигателей при повторно-кратковременном режиме работы
В общем случае каждый период работы tр нагрузочной диаграммы повторно-кратковременного режима (ПКР) может иметь несколько ступеней (рис. 5.13). Для приведения такой диаграммы к ви

Проверка двигателей на достаточность пускового момента и перегрузочную способность
  Выбранный для электропривода двигатель необходимо проверить на достаточность начального пускового момента и перегрузочную способность. Двигатели переменного тока

Определение допустимой частоты включения короткозамкнутых асинхронных двигателей
  При малых продолжительностях цикла повторно-кратковременных режимов возрастает доля пусковых и тормозных потерь в общем балансе потерь энергии за цикл и лимитирующими режим в теплов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги