рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Номинальные режимы работы электродвигателей

Номинальные режимы работы электродвигателей - раздел История, Основные сведения. История развития ЭП Под Номинальным Режимом Работы Элек­Трической Машины Понимается Режим, Для Ко...

Под номинальным режимом работы элек­трической машины понимается режим, для которого она предназначена предприятием-изготовителем (ГОСТ 17154-71). Для этого режима в каталогах и паспорте двигателя указываются: номинальная полезная меха­ническая мощность на валу, Вт, кВт или МВт; номинальное напряжение, В, кВ (в том числе номинальное напряжение системы воз­буждения, номинальное напряжение ротора АД с контактными кольцами); номинальный ток, А, кА (в том числе ток возбуждения, ток ротора); номинальная частота враще­ния, об/мин (или номинальная угловая скорость, рад/с); номинальный КПД, %; номинальный коэффициент мощности.

В соответствии с ГОСТ 183-74 (СТ СЭВ 1346-78) установлено восемь номи­нальных режимов работы электрических ма­шин, которые имеют условные обозначения S1—S8 и определяются следующим обра­зом.

S1 - Режим продолжительной нагрузки — работа при постоянной нагрузке, достаточно длительная для достижения теплового равно­весия, т. е. температура всех частей элек­трической машины достигает установивше­гося значения. Соответствующие этому ре­жиму диаграммы изменения нагрузки М (полезного механического момента на валу двигателя), мощности тепловых потерь и температуры τ показаны на рис. 5.3.

 
Рисунок 5.3 - Диаграммы полезного момента М, мощности тепловых потерь и темпе­ратуры двигателя τ при работе в режи­ме S1

S2- Режим кратковременной нагрузки — работа при постоянной нагрузке в течение заданного времени, меньшего, чем требуется для получения теплового равновесия, с после­дующим отключенным неподвижным состоя­нием, имеющим достаточную продолжитель­ность для достижения машиной температуры окружающей среды. Характеризующей вели­чиной является продолжительность кратко­временной работы. Определяются следующие значения продолжительности кратковремен­ной работы: 10, 30, 60 и 90 мин. Соответ­ствующие режиму S2 диаграммы показаны на рис. 5.4.

 
Рисунок 5.4 - Диаграммы М, и τ при рабо­те двигателя в режиме S2

S3 - Режим повторно-кратковременной на­грузки — последовательность идентичных рабочих циклов, каждый из которых со­стоит из периодов работы при постоянной нагрузке и отключенного неподвижного со­стояния; длительность этих периодов не до­статочна для достижения теплового равнове­сия за время одного рабочего цикла, а нали­чие пускового тока существенно не влияет на нагрев. Соответствующие диаграммы пока­заны на рис. 5.5.

Для режима S3 характеризующей вели­чиной является относительная продолжитель­ность включения

, (5.10)

 

где период работы при номинальных условиях; — период отключенного непо­движного состояния (паузы); — продол­жительность цикла.

Определяются следующие значения отно­сительной продолжительности работы: 15, 25, 40 и 60 %. Продолжительность одного цикла, если нет других указаний, принима­ется равной 10 мин.

 
Рисунок 5.5 - Диаграммы М, и τ при работе двигателя в режиме S3

S4 -Режим повторно-кратковременной нагрузки, включая пуск, — последовательность идентичных рабочих циклов, каждый из которых состоит из периодов пуска, работы при постоянной нагрузке и отключенного неподвижного состояния; длительность этих периодов недостаточна для достижения теп­лового равновесия за время рабочего цикла. Диаграммы, соответствующие этому режиму, показаны на рис. 5.6.

 
Рисунок 5.6 - Диаграммы М и τ при работе двигателя в режиме S4

S5 - Режим повторно-кратковременной на­грузки, включая электрическое торможе­ние, — последовательность идентичных ра­бочих циклов, каждый из которых состоит из периодов пуска, работы при постоянной нагрузке, быстрого электрического торможе­ния и отключенного неподвижного состоя­ния; длительность этих периодов недостаточна для достижения теплового равновесия за вре­мя одного цикла. Соответствующие этому режиму диаграммы показаны на рис. 5.7.

 

Рисунок 5.7 - Диаграммы М, и τ при работе дви­гателя в режиме S5

 

Для режимов работы S4 и S5 характе­ризующими величинами являются: относи­тельная продолжительность включения, число включений в час, коэффициент инерции и постоянная кинетической энергии.

Под относительной продолжительностью включения понимается для режима S4

, (5.11)

 

для режима S5

, (5.12)

 

где, кроме известных величин, и — периоды соответственно пуска и торможения.

Продолжительность цикла, с, находится по формуле

, (5.13)

где — число включений (циклов) в час.

Под коэффициентом инерции понимается отношение суммы момента инерции двига­теля и приведенного к валу двигателя мо­мента инерции механизма к моменту инерции двигателя

. (5.14)

 

Постоянная кинетической энергии — от­ношение кинетической энергии, запасенной ротором при номинальной частоте вращения (угловой скорости), к номинальной полной мощности или произведению номинальных напряжения и тока в машинах постоянного тока.

Для режимов работы S4 и S5 опреде­ляются следующие значения величин: ПВ= 15, 25, 40 и 60 %; z= 30, 60, 90, 120, 180, 240 и 360 вкл./ч; 1,2; 1,6; 2; 2,5 и 4.

S6-Режим продолжительной работы при переменной нагрузке— последовательность идентичных рабочих циклов, каждый из ко­торых состоит из периодов работы при по­стоянной нагрузке и на холостом ходу; длительность этих периодов недостаточна для достижения теплового равновесия за вре­мя одного рабочего цикла. Соответствующие диаграммы приведены на рис. 5.8.

 
Рисунок 5.8 - Диаграммы M, и τ при работе двигателя в режиме S6

Характе­ризующей величиной является продолжи­тельность работы

, (5.15)

 

где — период работы на холостом ходу механизма.

Определяются следующие значения ПР = 15, 25, 40 и 60 %. Продолжительность одного цикла, если нет других указаний, принимается равной 10 мин.

S7 - Режим продолжительной нагрузки, включая электрическое торможение, — после­довательность идентичных рабочих циклов, каждый из которых состоит из периодов пуска, работы при постоянной нагрузке и электрического торможения; длительность рабочего периода недостаточна для достиже­ния теплового равновесия за время одного цикла.

Диаграммы, соответствующие этому ре­жиму, показаны на рис. 5.9.

Для режима работы S7 характеризую­щими величинами являются: число включе­ний в час, коэффициент инерции и постоянная кинетической энергии. Определяются следующие значения величин: z — 30, 60, 90, 120, 180, 240 и 360 вкл./ч; = 1,2; 1,6; 2; 2,5; 4.

 
Рисунок 5.9 - Диаграммы M, и τ при работе двигателя в режиме S7  

S8 - Режим работы при периодическом изменении частоты вращения и нагрузки

последовательность идентичных рабочих цик­лов, каждый из которых состоит из периодов ускорения, работы при постоянной нагрузке, соответствующей заданной частоте враще­ния, затем одного или нескольких периодов работы при других постоянных значениях нагрузки, соответствующих другим частотам вращения; длительность каждого рабочего периода недостаточна для достижения тепло­вого равновесия за время одного рабочего цикла. Соответствующие данному режиму диаграммы для случая трех периодов ча­стоты вращения показаны на рис. 5.10.

 

Рисунок 5.10 - Диаграммы , М, и при работе двигателя в режиме S8

 

Для режима работы S8 характеризую­щими величинами являются число включе­ний в час, относительная продолжительность работы (ПР) для каждой внешней нагрузки и соответствующей ей частоты вращения, а также коэффициент инерции и постоянная кинетической энергии. Относительная про­должительность работы в данном случае для каждой из нагрузок определяется по фор­муле

, (5.16)

 

где — период работы при постоянной 1-й нагрузке; — период переходного процесса (ускорения или замедления) при переходе j-му значению частоты вращения (угловой скорости) и соответствующей ей нагрузке.

Например, для диаграммы рис. 5.10:

;

; .

 

Для режима работы S8 определяются следующие значения величин: z = 30, 60, 90, 120, 180, 240 и 360 вкл./ч; = 1,2; 1,6; 2; 2,5; 4; ПР= 15, 25, 40 и 60%.

В каталогах на электрические машины приводятся данные для номинальных режимов S1, S2 и S3. Задача выбора электриче­ской машины по мощности заключается в том, чтобы правильно сопоставить ее рабо­чий режим с номинальным, обеспечив мак­симальное использование выбранного дви­гателя по условиям нагрева.

– Конец работы –

Эта тема принадлежит разделу:

Основные сведения. История развития ЭП

Общая структура ЭП... Требования к ЭП... Классификация ЭП...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Номинальные режимы работы электродвигателей

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая структура электропривода
Нельзя представить себе ни одного современного про­изводственного механизма, в любой области техники, кото­рый не приводился бы в действие автоматизированным электроприводом. В электроприводе основ

Требования к электроприводу
Сформулируем общие требования к ЭП, как к системе, ответственной за управляемое электромеханическое преобразование энергии, т.е. определим главные показатели, которые характеризуют ЭП. 1.

Состав механической части электропривода
Обычно двигатель приводит в действие производственный механизм через систему передач, отдель­ные элементы которой движутся с различными скоростями. Часто в рабочих механизмах один из элементов сове

Механические характеристики производственных механизмов и электродвигателей
При рассмотрении работы электродвига­теля, приводящего в действие производственный меха­низм, необходимо выявить соответствие механических характеристик двигателя характеристике производственного м

Установившийся режим работы электропривода
  Рисунок 2.8 – Режимы работы электродвигателей Механические характеристики позволяют просто и наглядно определить

Статическая устойчивость ЭП
Механические характеристики двигателей и производственных механизмов должны подбираться так, чтобы обеспечивать устойчивую работу привода в установившемся режиме. В статически устой

Переходные режимы работы ЭП
Переходным режимом электропривода называют ре­жим работы при переходе от одного установившегося со­стояния к другому, когда изменяются скорость, момент и ток. Причинами возникновения перех

Время ускорения и замедления привода
Поскольку периоды разгона и торможения ЭП обычно снижают эффективность работы механизма, их стремятся сокращать. Особенно важно такое сокращение для приводов механизмов, работающих с частыми пускам

Основные уравнения для ДПТНВ
Напряжение, подводимое к якорной цепи двигателя, в уста­новившемся режиме уравновешивается падением напряжения на сопротивлениях цепи якоря и противо э.д.с. якоря, которая наво­дится в обмотке якор

Построение механической характеристики
Естественная механическая и скоростная характеристики двигателя постоянного тока независимого возбуждения имеют вид прямых, пересекающих ось ординат, поэтому они могут быть построены по двум точкам

Построение динамических характеристик
При скорости идеального холостого хода, когда ток в якорной цепи равен нулю, ЭДС якоря, направленная навстречу приложенному     Рисунок 3.3 - Динамическая харак

Уравнение характеристик двигателя в относительных единицах
Для сравнения характеристик двигателей различной мощности удобно представить характеристики двигателя в относительных единицах. При этом принимаются следующие базисные величины: Uб

Основные показатели регулирования угловой скорости электроприводов
Регулированием скорости называется принудительное изменение скорости электропривода в зависимости от тре­бований технологического процесса. Понятие регулирования скорости не следует смешивать с ест

Регулирование скорости ДПТ НВ
Из уравнения скоростной или механической характеристик, вытекает, что возможны три способа регулирования угловой скорости двигателя 1) Изменением напряжения на якоре 2) Изменение

Рекуперативное торможение (генераторное торможение с отдачей энергии в сеть)
Режим рекуперативного генераторного торможения имеет место, когда скорость двигателя превышает скорость холостого хода ω>ω0 . При этом э.д.с. якоря Ея превышае

Динамическое торможение
Происходит при отключе­нии якоря двигателя от сети и замыкании его на резистор, поэтому иногда его называют реостатным торможением. Обмотка возбуждения при этом должна оста­ваться присоединенной к

Торможение противовключением
(Генераторный ре­жим работы последовательно с сетью)   3.10.3.1 За счёт изменения полярности приложенного напряжения Изменение направления вращения

Характеристики двигателя с последовательным возбуждением
  Рисунок 3.37 - Схема ДПТ последовательного возбуждения   Обмотка возбуждения включена последовательно с обмоткой якоря, а следовательно ток возбуждения и пото

Построение характеристик
Для получения общего характера зависимостей можно воспользоваться кусочно- линейной апроксимацией кривой намагничивания двигателя Ф*=f(Iя*). Первый участок I

Регулирование скорости ДПТПВ изменением сопротивления в цепи якоря
Рассмотрим характерные точки при введении сопротивлений в якорную цепь.   Рисунок 3.40 - Механические характеристики ДПТПВ прт реостатном регулировании  

Виды схем замещения
Математическое описание физических процессов в асинхронном двигателе в установившихся процессах выполняют на основе эквивалентных схем замещения. Это делают для одной фазы (ввиду симметричности обм

Установившиеся процессы АД на основе Г-образной схемы замещения.
Упрощенная схема замещения одной фазы асинхронного двигателя приведена на рисунке 4.2, где в обозначениях коэффициенты с индексом 1 относятся к обмотке статора (первичной цепи), а с индексом 2 – к

Вывод уравнения механической характеристики
Электромеханической характеристикой АД называют зависимость между угловой скоростью ротора ω (или скольжением) и током статора I1 или током ротора I’

Механические характеристики асинхронного двигателя в тормозных режимах
В п. 4.3 были рассмотрены механические характеристики асинхронной машины, работающей в двигательном режиме. Однако асинхронный двигатель может работать и в тормозных режимах: рекуперативном, при то

Схемы динамического торможения асинхронного двигателя
На рис. 4.7, а-е представлены различные схемы включения обмоток статора при питании их от источника постоянного тока. В схемах на рис. 4.7, д, е нагрузка всех фаз обмотки статора равномерна, однако

Пуск асинхронного двигателя с фазным ротором
Для пуска асинхронного двигателя с фазным ротором нужно принять меры для увеличения пускового момента и снижения пусковых токов. С этой целью в цепь ротора включают добавочное активное сопротивлени

Расчет и построение пусковых характеристик
Для расчета пусковых характеристик нужно задаться значениями момента , при котором происходит переключение ступеней пускового реостата о.е. Пусковые значения момента , (см. рис. 4.13) нахо

Реостатное регулирование скорости по цепи ротора
Реостатный способ пуска заключается во введении резисторов для асинхронных двигателей с короткозамкнутым ротором (АДсКЗ) в цепь статора, а для асинхронных двигателей с фазным ротором – в цепь ротор

Реостатное регулирование по цепи статора
Допустимый момент асинхронного двигателя с короткозамкнутым ротором при реостатном регулировании по цепи статора резко падает (как это показано штриховой линией на рис. 4.17, б), так как зна

Общие принципы
Если регулировать напряжение, подводимое к трем фазам статора асинхронного двигателя, то можно, отвлекаясь от влияния параметров регулирующего устрой­ства на характеристики двигателя, изменять макс

Регулирование скорости изменением напряжения АД с короткозамкнутым ротором
Механические характеристики двигателя с короткозамкнутым ротором при регулировании напряжения на статоре приведены на рис. 4.18. Из этих характеристик следует, что пределы регулирования весьма огра

Регулирование скорости изменением напряжения АД с фазным ротором
Лучшее использование двигателя и более благоприят­ные характеристики могут быть получены, если применить двигатель с фазным ротором, в роторную цепь его включить дополнительный нерегулируемый резис

Импульсное изменение напряжения
Для регулирования напряжения используются как тиристорные регуляторы напряжения с фазовым управле­нием, так и реакторы насыщения, автотрансформаторы и импульсные, например тиристорные или контактны

Общие принципы
Из выражения для угловой скорости асин­хронного двигателя:   (4.28)   следует, что угловую скорость можно регулировать, изме­няя число пар полюсов

Соотношение магнитных индукций и моментов
  Таблица 4.2 Соотношение магнитных индукций № рис. Двойное число полюсов (обозначение II, рис.4.40) Одинарное число пол

Механические характеристики при регулировании
Переключение обмоток статора по схемам, изображен­ным на рис. 4.23, г и д, дает возможность получить момент, вдвое больший при двойном числе полюсов по сравнению с одинарным. Это озна

Особенности регулирования
Практически диапазон регулирования не превышает 6:1 (3000 : 500 об/мин). Направление регулирования при этом способе является условным и зависит от того, при каком числе полюсов угло­вая ск

Частотное регулирование угловой скорости асинхронного электропривода
    Рисунок 4.27 - Схема АД при частотном регулировании   Частотный способ является одним из наиболее перспективных и широко используемых способов

Каскадные схемы
Параметрические способы регулирования скорости АД (кроме изменения числа пар полюсов) имеют низкие энергетические по­казатели, так как с увеличением диапазона регулирования растут потери скольжения

Электромеханический каскад
Электромеханический каскад (рис. 4.30), потребляя из сети электрическую мощность передает на вал двигателя М механическую мощность за вычетом потерь мощности в статоре и мощности ско

Машинно-вентильные и вентильные каскады
По элементному составу различают ма­шинные, вентильно-машинные электромеха­нические и электрические каскады, а также вентильные электрические каскады. На рис. 4.31 приведены схемы машинно-вен­тильн

Механические характеристики синхронного двигателя
  Рисунок 4.35 – Схема синхронного двигателя   Схема включения синхронного двига­теля приведена на рис. 4.35. Этот двигатель имеет обычный по своему конструктив

Векторная диаграмма синхронного двигателя
Рассмотрим упро­щенную векторную диаграмму синхронного двигателя. На этой диаграмме приняты следующие обозначе­ния: I - вектор фазного тока статора; Е, Uс — векторы

Угловая характеристика синхронного двигателя
Зависимость момента синхронного двигателя от угла внутрен­него сдвига фаз приведена на рис. 4.39. Наибольшего значения момент двигателя достигает при угле θ = π/2. Эта величина харак­тери

Регулирование скорости синхронного электропривода
Вентильным двигателем (ВД) называется устройство, состоящее из электродвигателя переменного тока (по конструкции аналогичного синхронному) и вентильного коммутатора (преобразова­теля частоты

Допущения при изучении процессов нагрева двигателей
Условия нагрева отдельных частей машины различны. Большему нагреву подвергаются части обмоток, расположенные во внутренних областях машины. Так же неодинаково и выделение теплоты в различных режима

Вывод уравнения нагрева
Уравнение теплового баланса двигателя при неизменной нагрузке имеет вид:   ΔРdt = Aτdt + Cdτ, (5.1)   где ΔР - количество теплоты (

Кривые нагрева и охлаждения
На рис. 5.2 даны кривые, отображающие процесс охлаждения двигателя. Здесь кривая 1 соответствует уменьшению нагрузки, а кривые 2 и 3 – отключению двигателя от сети. &n

Коэффициент ухудшения теплоотдачи
У самовентилируемых двигателей открытого исполнения малой и средней мощности постоянная времени составляет около 1 часа, у двигателей закрытого типа большой мощности – 3-4 часа. При отключении само

Основные положения выбора двигателей
Род тока для электропитания двигателя (постоянный ток, переменный ток трех- или однофазный промышленной или повышенной частоты) определяется выбором типа двигателя: двигатель постоянного или переме

Рекомендации по выбору двигателей
Для электропривода с глубоким регулированием частоты вращения приходится делать выбор между двигателем постоянного тока и асинхронным двигателем с короткозамкнутым ротором при его питании oт регули

Определение расчетной мощности и выбор двигателя
  Расчетная мощность двигателя Pрасч (кВт), требуемая для электропривода, определяется величинами статического нагрузочного момента Mс (Н м) на вал

Расчет мощности для некоторых производственных механизмов
Ниже приведены упрощенные формулы для определения расчетной мощности двигателей некоторых типовых установок, работающих в продолжительном режиме S1 с неизменной нагрузкой. Центробежные вен

Расчет мощности двигателя для продолжительного режима
Выбор конкретного типоразмера двигателя ведется на основании технических требований к электродвигателю: расчетной мощности, требуемой частоты вращения, режима работы, допустимых значений воздействи

Расчет мощности двигателя для кратковременного режима
Задача расчета сводится к определению мощности двигателя , способного выдержать перегрузку Pкр, работая в кратковременном режиме в течение времени tкр (см. рис.

Расчет мощности двигателей при повторно-кратковременном режиме работы
В общем случае каждый период работы tр нагрузочной диаграммы повторно-кратковременного режима (ПКР) может иметь несколько ступеней (рис. 5.13). Для приведения такой диаграммы к ви

Проверка двигателей на достаточность пускового момента и перегрузочную способность
  Выбранный для электропривода двигатель необходимо проверить на достаточность начального пускового момента и перегрузочную способность. Двигатели переменного тока

Определение допустимой частоты включения короткозамкнутых асинхронных двигателей
  При малых продолжительностях цикла повторно-кратковременных режимов возрастает доля пусковых и тормозных потерь в общем балансе потерь энергии за цикл и лимитирующими режим в теплов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги