рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Операторы

Операторы - раздел Программирование,   Глава 18 ...

 

Глава 18

ОПЕРАТОРЫ

Операции и операторы

Средние энергии

Средняя энергия атома

Оператор места

Оператор импульса

Момент коли­чества движения

Изменение средних со временем

 

Операции и операторы

Для того чтобы управиться со всем, что мы до сих пор делали в квантовой механике, достаточно было бы обычной алгебры, но мы все же время от времени демонстрировали особые способы записи квантовомеханических величин и уравнений. Мы хотели бы рассказать теперь немного больше о некоторых интересных и по­лезных способах описания квантовомеханических величин.

К предмету квантовой механики можно подойти разными способами, и во многих книгах прибегают совсем к иному подходу, чем у нас. Когда вы начнете читать другие книжки, то может оказаться, что вам не удастся сразу связать то, что в них говорится, с тем, что де­лали мы. Хотя в этой главе мы и получим кое-какие новые результаты, она не похожа на дру­гие главы. У нее совсем иная цель: рассказать о других способах выражения тех же самых фи­зических представлений. Зная это, вы легче поймете, о чем говорится в других книжках. Когда люди впервые начали разрабатывать классическую механику, они неизменно распи­сывали свои уравнения через х-, у- и z-компоненты. Затем кто-то сделал шаг вперед в указал, что все можно упростить, введя век­торные обозначения. Правда, очень часто, чтобы представить себе задачу конкретнее, вы разбиваете векторы обратно на их компонен­ты. Но обычно все же куда легче делать расчеты и разбираться в существе дела, работая с век­торами. В квантовой механике нам тоже удалось упростить запись многих вещей, воспользовав­шись идеей «вектора состояния». Вектор состоя­ния |y> ничего общего, конечно, не имеет с геометрическими векторами в трехмерном пространстве; это просто отвлеченный символ, который обозначает физиче­ское состояние, отмечаемое своим «значком» или «назва­нием» y. Представление это весьма и весьма полезно, потому что на языке этих символов законы квантовой механики выглядят как алгебраические уравнения. К примеру, тот наш фундаментальный закон, что всякое состояние можно соста­вить из линейной комбинации базисных состояний, записы­вается так:

где Сi — совокупность обычных (комплексных) чисел, ампли­туд Ci=<i|y>, а |1>, |2>, |3> и т. д. обозначают базисные состояния в некотором базисе, или представлении.

Если вы берете какое-то физическое состояние и что-то про­делываете над ним (поворачиваете или ждете в течение времени At или еще что-то), то вы получаете уже другое состояние. Мы говорим: «производя над состоянием операцию, получаем новое состояние». Эту же идею можно выразить уравнением

Операция над состоянием создает новое состояние. Оператор А обозначает некоторую определенную операцию. Когда эта операция совершается над каким-то состоянием, скажем над |y>, то она создает какое-то другое состояние |j>.

Что означает уравнение (18.2)? Мы определяем его смысл так. Умножив уравнение на <i| и разложив |y> по (18.1), вы получите

(|j> — это состояния из той же совокупности, что и |i>. Теперь это просто алгебраическое уравнение. Число <i|j> показывает, какое количество базисного состояния |i> вы обнаружите в |j>, и оно определяется через линейную суперпо­зицию амплитуд <j|y> того, что вы обнаружите |y> в том или ином базисном состоянии. Числа <i|A^|j> — это попросту коэф­фициенты, которые говорят, сколько (какая доля) состояния <j|y> входит в сумму. Оператор А численно описывается на­бором чисел, или «матрицей»

Значит, (18.2) это запись уравнения (18.3) на высшем уровне. А на самом деле даже немножко и сверх того: в нем подразуме­вается нечто большее. В (18.2) нет ссылки на ту или иную систе­му базисных состояний. Уравнение (18.3) — это образ уравнения (18.2) в некоторой системе базисных состояний. Но, как известно, система годится любая. Именно это и имеется в виду в (18.3). Операторная манера записи, стало быть, уклоняется от того или иного выбора системы. Конечно, если вам хочется определенности, вы вольны избрать одну из систем. И когда вы де­лаете этот выбор, вы пишете уравнение (18.3). Значит, опера­торное уравнение (18.2) — это более отвлеченный способ за­писи алгебраического уравнения (18.3). Это очень походит на разницу между записью

c=aXb и записью

Первый способ нагляднее. Но если вам понадобятся числа, вы наверняка зададите сперва компоненты относительно некоторой системы осей. Точно так же, если вы хотите дать понять, что за штука А, вам нужно быть готовыми задать матрицу Аij через некоторую совокупность базисных состояний. И пока вы имеете в виду определенную совокупность чисел aij, уравнение (18.2) означает то же, что и (18.3). (И нужно еще помнить, что если уж вы знаете матрицу для одной частной совокупности ба­зисных состояний, то всегда сможете подсчитать матрицу, соот­ветствующую любому другому базису. Матрицу всегда можно преобразовать от одного представления к другому.)

Операторное уравнение (18.2) допускает и другие возмож­ности. Если мы представили себе некоторый оператор А, то его можно применить к любому состоянию |y> и он создаст новое состояние A^ |y>. Временами получаемое таким путем «состоя­ние» может оказаться очень своеобразным — оно может уже не представлять собой никакой физической ситуации, с которой можно встретиться в природе. (Например, может получиться состояние, которое не нормировано на вероятность получить один электрон.) Иными словами, временами мы можем получить «состояния», которые есть математически искусственные обра­зования. Эти искусственные «состояния» могут все равно ока­заться полезными, чаще всего в каких-либо промежуточных вы­числениях.

Мы уже приводили много примеров квантовомеханических операторов. Встречался нам оператор поворота R^у(q), который, взяв состояние |y>, делает из него новое состояние, представ­ляющее собой старое состояние с точки зрения повернутой сис­темы координат. Встречался оператор четности (или инверсии)

, создающий новое состояние обращением всех координат. Встре­чались и операторы sх, sу и sz для частиц со спином 1/2.

Оператор J^z определялся в гл. 15 через оператор поворота на малые углы e:

Это, конечно, попросту означает, что

В этом примере J^z|y> — это умноженное на h/ie состояние, получаемое тоща, когда вы повернете |y> на малый угол e и затем вычтете прежнее состояние. Оно представляет «состоя­ние», являющееся разностью двух состояний.

Еще один пример. Мы имели оператор р^х, он назывался опе­ратором (x-компоненты) импульса и определялся уравнением, похожим на (18.6). Если D^x (L)оператор, который смещает состояние вдоль х на длину L, то р^х определялось так:

где d — малое смещение. Смещение состояния |y> вдоль оси х на небольшое расстояние d дает новое состояние |y'>. Мы го­ворим, что это новое состояние есть старое состояние плюс еще новый кусочек

Операторы, о которых мы говорим сейчас, действуют на вектор состояния, скажем на |y>, являющийся абстрактным описанием физической ситуации. Это совсем не то, что алгебра­ические операторы, действующие на математические функции. Например, d/dx это «оператор», действие которого на f(x) соз­дает из f(x) новую функцию f'(x)=df/dx. Другой пример ал­гебраического оператора — это Ñ2. Можно понять, отчего в обоих случаях пользуются одним и тем же словом, но нужно помнить, что это разные типы операторов. Квантовомеханический оператор А действует не на алгебраическую функцию, а на вектор состояния, скажем на |y>. В квантовой механике употребляются и те и другие операторы, и часто, как вы уви­дите, в уравнениях сходного типа.

Когда вы впервые изучаете предмет, то все время надо иметь в виду эту разницу. А позднее, когда предмет вам станет ближе, вы увидите, что не так уж важно делать резкое различие между одними операторами и другими. И во многих книгах, как вы убедитесь, оба типа операторов обозначаются одинаково!

Теперь нам пора продвинуться вперед и узнать о мно­гих полезных вещах, которые можно проделывать с помощью операторов. Но для начала небольшое замечание. Пускай у нас имеется оператор А^, матрица которого в каком-то базисе есть Aij=<i|A^|j>. Амплитуда того, что состояние A^|y> находится также в некотором другом состоянии |j>, есть <j|A^|y>. Имеет ли смысл комплексное сопряжение этой амплитуды? Вы, вероятно, сможете показать, что

где А^+ (читается «А с крестом») это оператор, матричные эле­менты которого равны

A+ij=(Aji)*. (18.9)

Иначе говоря, чтобы получить i, j-и элемент матрицы А+, вы обращаетесь к j, i-му элементу матрицы А (индексы пере­ставлены) и комплексно его сопрягаете. Амплитуда того, что состояние А^+|j> находится в состоянии |y>, комплексно сопряжена амплитуде того, что А^|y> находится в |j>. Опера­тор А^+ называется «эрмитово сопряженным» оператору А^. Мно­гие важные операторы квантовой механики имеют специальное свойство: если вы их эрмитово сопрягаете, вы опять возвращае­тесь к тому же оператору. Если В как раз такой оператор, то В^+=В^; его называют «самосопряженным», или «эрмитовым», оператором.

Средние энергии

Но что случится, если вы проделаете свои измерения над состоянием |y>, которое не является стационарным? Раз у си­стемы нет определенной энергии,… На этот вопрос мы ответим, если возьмем проекцию состоя­ния |y> на систему…

Средняя энергия атома

Этот интеграл можно при желании записывать иначе:

Оператор места

Каково среднее местоположение электрона в атоме? В данном состоянии |y> каково среднее значение координа­ты х? Разберем одномерный случай, а обобщение на трех­мерный или на системы с большим числом частиц останется на вашу долю. Мы имеем состояние, описываемое функцией y (x), и продолжаем раз за разом измерять х. Что получится в среднем? Очевидно, ∫xP(x)dx, где Р(х)вероятность обнаружить

электрон в небольшом элементе длины dx возле х. Пусть плот­ность вероятности Р(х) меняется с х так, как показано на фиг. 18.1.

Фиг. 18.1. Кривая плотно­сти вероятности, представ­ляющей локализованную час­тицу.

 

Вероятнее всего вы обнаружите электрон где-то возле вершины кривой. Среднее значение х тоже придется куда-то на область невдалеке от вершины, а точнее, как раз на центр тяжести площади, ограниченной кривой.

Мы видели раньше, что P(x)=| y (x)|2=y*(x) y(х), значит, среднее х можно записать в виде

Наше уравнение для <x>ср имеет тот же вид, что (18.18). Когда мы считали среднюю энергию, мы ставили между двумя y оператор, а когда считаем среднее положение, ставим про­сто х. (Если угодно, можете рассматривать х как алгебраиче­ский оператор «умножь на х».) Эту параллель можно провести еще дальше, выразив среднее местоположение в форме, которая соответствует уравнению (18.18). Предположим, что мы просто написали

где

и смотрим, не удастся ли найти такой оператор х, чтобы он создавал состояние |a>, при котором уравнение (18.34) не противоречит уравнению (18.33). Иначе говоря, мы должны найти такое |a>, чтобы было

Разложим сперва <y|a> по x-представлению:

Сравним затем интегралы в (18.36) и (18.37). Вы видите, что в х-представлении только в этом представлении)

Воздействие на |y> оператора х^ для получения |a> равнознач­но умножению y (x)=<x|y> на х для получения a (х)=<x|a>. Перед нами определение оператора х^ в координатном представ­лении.

(Мы не задавались целью получить x-представление матрицы оператора х^. Если вы честолюбивы, попытайтесь показать, что

Тогда вы сможете доказать поразительную формулу

т. е. что оператор х^ обладает интересным свойством: когда он действует на базисное состояние |x>, то это равнозначно умножению на х.)

А может, вы хотите знать среднее значение x2? Оно равно

Или, если желаете, можно написать и так:

где

Под x^2 подразумевается х^х^ — два оператора применяются друг за другом. С помощью (18.42) можно подсчитать <x2>ср, пользуясь каким угодно представлением (базисными состоя­ниями). Если вам нужно знать среднее значение хn или любого многочлена по х, то вы легко это теперь проделаете.

 

Оператор импульса

Теперь мы хотим рассчитать средний импульс электрона, опять начав с одномерного случая. Пусть Р(р)dp — вероят­ность того, что измерение приведет к импульсу в интервале между р и p+dp. Тогда

Обозначим теперь через <р|y> амплитуду того, что состоя­ние |y> есть состояние с определенным импульсом |р>. Это та же самая амплитуда, которую в гл. 14, § 3, мы обозначали <имп.р|y>; она является функцией от р, как <x|y> является функцией от х. Затем мы выберем такую нормировку амплитуды, чтобы было

Тогда получится

что очень похоже на то, что мы имели для <x>ср.

При желании можно продолжить ту же игру, которой мы предавались с <x>ср. Во-первых, этот интеграл можно записать так:

Теперь вы должны узнать в этом уравнении разложение амплитуды <y|b> — разложение по базисным состояниям с определенным импульсом. Из (18.45) следует, что состояние |b> определяется в импульсном представлении уравнением

Иначе говоря, теперь можно писать

причем

где оператор р^ определяется на языке p-представления урав­нением (18.47).

[И опять при желании можно показать, что матричная запись р^ такова:

и что

Выводится это так же. как и для х.

Теперь возникает интересный вопрос. Мы можем написать <р>ср так, как мы это сделали в (18.45) и (18.48); смысл опе­ратора р^ в импульсном представлении нам тоже известен. Но как истолковать р^ в координатном представлении? Это бывает нужно знать, если у нас есть волновая функция y (x) и мы со­бираемся вычислить ее средний импульс. Позвольте более четко пояснить, что имеется в виду. Если мы начнем с того, что за­дадим <p>cp уравнением (18.48), то это уравнение можно бу­дет разложить по p-представлению и вернуться к (18.45). Если нам задано p-представление состояния, а именно амплитуда <p|y> как алгебраическая функция импульса p, то из (18.47) можно получить <p|b> и продолжить вычисление интеграла. Вопрос теперь в следующем: а что делать, если нам задано описание состояния в x-представлении, а именно волновая функ­ция y (x)=<x|y>?

Ну что ж, начнем раскладывать (18.48) в x-представлении.

Напишем

Но теперь надо знать другое: как выглядит состояние |b> в x-представлении. Если мы узнаем это, мы сможем взять ин­теграл. Итак, наша задача — найти функцию b (x)=<x|b>. Ее можно найти следующим образом. Мы видели в гл. 14, § 3, как <р|b> связано с <x|b>. Согласно уравнению (14.24),

Если нам известно <р|b>, то, решив это уравнение, мы найдем <x|b>. Но результат, конечно, следовало бы как-то выразить через y (x)=<x|y>, потому что считается, что именно эта ве­личина нам известна. Будем теперь исходить из (18.47) и, опять применив (14.24), напишем

Интеграл берется по х, поэтому р можно внести под интеграл

Теперь сравним это с (18.53). Может быть, вы подумали, что <x|b> равно py(x)? Нет, напрасно! Волновая функция <х|b>=b(x) может зависеть только от х, но не от р. В этом-то вся трудность.

К счастью, кто-то заметил, что интеграл в (18.55) мо­жно проинтегрировать по частям. Производная e-ipx/h по х равна (-i/h)pe-ipx/h, поэтому интеграл (18.55) это все равно, что

Если это проинтегрировать по частям, оно превратится в

Пока речь идет только о связанных состояниях, y(x) стремится к нулю при х®±¥, скобка равна нулю и мы имеем

А вот теперь сравним этот результат с (18.53). Вы видите, что

Все необходимое, чтобы взять интеграл в (18.52), у нас уже есть. Окончательный ответ таков:

Мы узнали, как выглядит (18.48) в координатном представлении. Перед нами начинает постепенно вырисовываться интересная картина. Когда мы задали вопрос о средней энергии состояния |y>, то ответ был таков:

То же самое в координатном мире записывается так:

Здесь — алгебраический оператор, который действует на функцию от х.

Когда мы задали вопрос о среднем значении х, то тоже обнаружили, что ответ имеет вид

В координатном мире соответствующие уравнения таковы:

Когда мы задали вопрос о среднем значении р, то ответ оказался

В координатном мире эквивалентные уравнения имели бы вид

Во всех наших трех примерах мы исходили из состояния |y> и создавали новое (гипотетическое) состояние с помощью квантовомеханического оператора. В координатном представле­нии мы генерируем соответствующую волновую функцию, дей­ствуя на волновую функцию y (x) алгебраическим оператором. Можно говорить о взаимнооднозначном соответствии (для одно­мерных задач) между

В этом перечне мы ввели новый символ для алгебраического оператора (h/i)д/дx:

и поставили под значок х, чтобы напомнить, что имеем пока дело с одной только x-компонентой импульса.

Результат этот легко обобщается на три измерения. Для других компонент импульса

При желании можно даже говорить об операторе вектора импульса и писать

где ех, еy и еz — единичные векторы в трех направлениях. Можно записать это и еще изящнее:

Окончательный вывод наш таков: по крайней мере для некоторых квантовомеханических операторов существуют соот­ветствующие им алгебраические операторы в координатном пред­ставлении. Все, что мы до сих пор вывели (с учетом трехмер­ности мира), подытожено в табл. 18.1. Каждый оператор может быть представлен в двух равноценных видах:

либо

либо

Теперь мы дадим несколько иллюстраций применения этих идей. Для начала выявим связь между.

Если применить дважды, получим

Это означает, что можно написать равенство

Или, в векторных обозначениях,

(Члены в алгебраическом операторе, над которыми нет символа оператора ^, означают простое умножение.) Это уравнение очень приятно, потому что его легко запомнить, если вы еще не забыли курса классической физики. Хорошо известно, что энергия (не­релятивистская) состоит из кинетической энергии р2/2m плюс потенциальная, а у нас тоже оператор полной энергии. Этот результат произвел на некоторых деятелей столь силь­ное впечатление, что они начали стремиться во что бы то ни стало вбить студенту в голову всю классическую физику, прежде чем приступить к квантовой. (Мы думаем иначе!) Параллели очень часто обманчивы. Если у вас есть операторы, то важен порядок различных множителей, а в классическом уравнении он безраз­личен.

Таблица 18.1 • АЛГЕБРАИЧЕСКИЕ ОПЕРАТОРЫ В КООРДИ­НАТНОМ ПРЕДСТАВЛЕНИИ

В гл. 15 мы определили оператор р^х через оператор смещения D^x [см. формулу (15.27)]:

где d — малое смещение. Мы должны показать, что это экви­валентно нашему новому определению. В соответствии с тем, что мы только что доказали, это уравнение должно означать то же самое, что и

Но в правой части стоит просто разложение y (x+d) в ряд Тэйлора, а y (x+d)— то, что получится, если сместить состояние влево на б (или сдвинуть на столько же вправо систему коорди­нат). Оба наши определения р^ согласуются!

Воспользуемся этим, чтобы доказать еще кое-что. Пусть у нас в какой-то сложной системе имеется множество частиц, которым мы присвоим номера 1, 2, 3, ... . (Для простоты остано­вимся на одномерном случае.) Волновая функция, описывающая состояние, является функцией всех координат х1: х2, x3,... . Запишем ее в виде y (x1, х2, х3, ...). Сдвинем теперь систему (вле­во) на d. Новая волновая функция

может быть записана так:

Согласно уравнению (18.65), оператор импульса состояния |y> (назовем его полным импульсом) равняется

Но это все равно, что написать

Операторы импульса подчиняются тому правилу, что пол­ный импульс есть сумма импульсов отдельных частей. Здесь, как видите, все чудесным образом переплетено и разные вещи взаимно согласуются.

Момент количества движения

(напоминаем: это определение применимо только к состоянию |y>, у которого…

Изменение средних со временем

[А исключаются, скажем, такие вещи, как оператор внешнего потенциала V(x, t), меняющийся во времени.] Теперь предста­вим, что мы вычислили… Как <A>ср будет зависеть от времени? Но почему оно вообще может зависеть от времени? Ну, во-первых, может…

Во многих книжках для используется один и тот же символ: физика в них одна и та же, да и удобнее все время обходиться без новых букв. А из контекста всегда ясно, что имеется в виду.

Уравнение (18.38) не означает, что |a>=x|y> [ср. (18.35)]. Сокра­щать на <х| нельзя, потому что множитель х перед <x|y> для каждого состояния <х| имеет свое значение. Это — значение координаты электрона в состоянии |х> [см. (18.40)].

Можно выразить это и иначе. Какую бы функцию (т. е. состояние) вы ни выбрали, ее всегда можно представить в виде линейной комбина­ции базисных состояний, являющихся состояниями с определенной энер­гией. Поскольку в этой комбинации присутствует примесь состояний с более высокими энергиями, то средняя энергия окажется выше энергии основного состояния.

 

Элемент объема мы обозначаем dОбъем. Он попросту равен dxdydz, а интеграл берется от -¥ до +¥ по всем трем координатам.

– Конец работы –

Используемые теги: Операторы0.04

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Операторы

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Операторы цикла
Оператор while это оператор цикла с предусловием проверя ется условие и пока условие истинно повторяется тело цикла... Пример Вычисляем сумму четных чисел пока сумма меньше... include lt stdio h gt...

Составной оператор
Операторы языка Паскаль... Оператор присваивания... Оператор перехода...

Правила использования операторов цикла
Оператор цикла с предусловием While... Оператор цикла с постусловием Repeat... Правила использования операторов цикла...

Блок –это составной оператор, внутри которого имеются определения переменных
Составной оператор это несколько операторов заключенных в фигурные скобки... a d res a d... Блок это составной оператор внутри которого имеются определения переменных...

Операторы физических частиц
Операторы физических частиц... Линейные операторы Собственные функции и...

Простые операторы
Простые операторы... Оператор это конструкция из элементов языка определяющая некоторый законченный этап обработки данных Операторы...

Тц - один простой или составной оператор
Оператор цикла с параметром... Часто параметр цикла целого типа и его надо изменять с шагом в сторону... Форма записи цикла с параметром имеет вид...

Основы программирования в среде Турбо Паскаля Оператор присваивания процедуры ввода вывода
Лабораторная работа Основы программирования в среде Турбо Паскаля Оператор присваивания процедуры ввода вывода... Теоретический обзор... Схема алгоритма...

УСЛОВНЫЕ ОПЕРАТОРЫ
УСЛОВНЫЕ ОПЕРАТОРЫ... Цель работы ознакомление с задачами c разветвляющимся алгоритмом изучение принципа действия условных операторов if и...

Лекция № 7 5-тый курс Тема: Структурная методология описания проектов цифровых систем устройств с регулярной структурой посредством оператора generate
Тема Структурная методология описания проектов цифровых систем устройств с регулярной структурой посредством оператора generate... О задании глобальных параметров проекта из внешней среды оператор generic... Структурная методология описания проектов систолических цифровых систем устройств посредством оператора generate...

0.033
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам