рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Средняя энергия атома

Средняя энергия атома - раздел Программирование, Операторы Пусть Мы Хотим Узнать Среднюю Энергию Атома В Состоянии, Описываемом Волновой...

Пусть мы хотим узнать среднюю энергию атома в состоянии, описываемом волновой функцией y(r); как же ее найти? Рассмот­рим сперва одномерную задачу, когда состояние |y> опреде­ляется амплитудой <x|y>=y (x). Нас интересует частный слу­чай применения уравнения (18.19) к координатному представ­лению. Следуя нашей обычной процедуре, заменим состояния |i> и |j> на |х> и |х'> и сумму на интеграл. Мы получим

Этот интеграл можно при желании записывать иначе:

где

Интеграл по х' в (18.25) тот же самый, что встречался нам в гл. 14 [см. (14.50) и (14.52)]. Он равен

Поэтому можно написать

Вспомним, что <y|x>=<x|y>*=y*(x); с помощью этого равенства среднее значение энергии в (18.23) можно записать в виде

Если волновая функция y (x) известна, то, взяв этот интеграл, вы получите среднюю энергию. Вы теперь начинаете понимать, как от представлений о волновом векторе можно перейти к пред­ставлению о волновой функции и обратно.

Величина в фигурных скобках в (18.27) это алгебраический оператор. [«Оператор» V(x) означает «умножь на V(x)».] Мы обоз­начим его

В этих обозначениях (18.23) превращается в

 

Определенный здесь алгебраический оператор, конечно, не тождествен с квантовомеханическим оператором Н^. Новый оператор действует на функцию координаты y(x)=<x|y>, об­разуя новую функцию от х, j(x)=<x|j>, а H^ действует на век­тор состояния |y>, образуя другой вектор состояния |ф>, причем не имеется в виду ни координатное, ни вообще какое-либо частное представление. Мало того, даже в координатном представлении не совсем то же, что Н^. Если бы мы решили работать в координатном представлении, то смысл оператору H^ пришлось бы придавать с помощью матрицы <x|H^|x'>, кото­рая как-то зависит от двух «индексов» x и x'; иначе говоря, сле­довало бы ожидать, что [как утверждает (18.25)] <x|j> свя­зано со всеми амплитудами <x|y> операцией интегрирования. А с другой стороны, мы нашли, что это дифференциальный оператор. Связь между <x|H^|х'> и алгебраическим оператором

мы уже выясняли в гл. 14, § 5.

Наши результаты нуждаются в одном уточнении. Мы пред­положили, что амплитуда y (x)=<x|y> нормирована, т, е. мас­штабы выбраны так, что

и вероятность увидеть электрон все равно где равна единице. Но вы могли бы, если бы захотели работать с ненормирован­ной y (х), следовало бы только писать

Это одно и то же.

Обратите внимание на сходство между (18.28) и (18.18). Оба эти способа записи одного и того же результата при работе в x-представлении часто встречаются. От первого можно пе­рейти ко второму, если А^ — локальный оператор, т. е. такой, для которого интеграл

может быть записан в виде, где дифференциальный алгебраический оператор. Однако встречаются операторы, для которых это неверно. Тогда приходится работать с ис­ходными уравнениями (18.21) и (18.22).

Наш вывод легко обобщается на три измерения. Итог таков:

 

где

причем подразумевается, что

Такие же уравнения получаются довольно очевидным образом и при обобщении на системы с несколькими электронами, но мы не будем сейчас заниматься выписыванием результатов.

С помощью (18.30) можно рассчитать среднюю энергию атомного состояния, даже не зная уровней энергии. Нужна только волновая функция. Это очень важный закон. Расскажем об одном интересном его применении. Пусть вам нужно узнать энергию основного состояния некоторой системы, скажем ато­ма гелия, но вы затрудняетесь решить уравнение Шредингера для волновой функции из-за большого числа переменных. Поло­жим, однако, что вы решили попробовать какую-то волновую функцию (выбрав ее по своему желанию) и подсчитать среднюю энергию. Иначе говоря, вы пользуетесь уравнением (18.29), обобщенным на три измерения, чтобы узнать, какова была бы средняя энергия, если бы атом был на самом деле в состоянии, описываемом этой волновой функцией. Эта энергия, бесспорно, окажется выше энергии основного состояния — самой низкой энергии, какую может иметь атом. Возьмем теперь новую функцию и вычислим новую среднюю энергию. Если она ниже, чем было при первом вашем выборе, значит, вы подошли ближе к истинной энергии основного состояния. Если вы немного поразмыслите, вы, конечно, начнете пробовать такие функции, в которых есть несколько свободных параметров. Тогда энергия выразится через эти параметры. Варьируя параметры так, что­бы получить наинизшую мыслимую энергию, вы тем самым пере­пробуете за один раз целый класс функций. Скорее всего вы обнаружите, что понижать энергию становится все труднее и труднее, т. е. начнете убеждаться в том, что уже довольно близко подошли к наинизшей возможной энергии. Именно так и был решен атом гелия — никаких дифференциальных урав­нений не решали, а составили особые функции со множеством поддающихся подгонке параметров, которые были подобраны так, чтобы дать средней энергии наинизшее значение.

– Конец работы –

Эта тема принадлежит разделу:

Операторы

На сайте allrefs.net читайте: "Операторы"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Средняя энергия атома

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Средние энергии
До сих пор мы в основном напоминали вам о том, что вы уже знаете. А теперь перейдем к новому. Как бы вы подсчитали среднюю энергию системы, скажем, атома? Если атом находится в определенном

Момент количества движения
Для интереса рассмотрим еще одну операцию — операцию орбитального момента количества движения. В гл. 15 мы опре­делили оператор J^z через R^z(j) — операто

Изменение средних со временем
Теперь мы познакомим вас с еще одной интересной вещью: вы узнаете, как средние изменяются во времени. Представим на минуту, что у нас есть оператор А^, в который время явным образом не входи

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги