рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Система m линейных уравнений с n переменными

Система m линейных уравнений с n переменными - раздел Программирование, Линейное программирование Система M Линейных Уравнений С N Переменными Имеет Вид:   ...

Система m линейных уравнений с n переменными имеет вид:

 

а11*Х1 + а12*Х2 + …+ а1j*Xj + …+ а1n*Xn = В1

а21*Х1 + а22*Х2 + …+ а2j*Xj + … + а2n*Xn = В2

………………………….

аi1*Х1 + аi2*Х2 +…+ аij*Xj + … + а in*Xn = В i (6)

………………………….

аm1*Х1 + аm2*Х2 + … + аmn*Xn = Вm

 

или в краткой записи

(I = 1, 2, …, m)

в задачах ЛП представляют интерес системы, в которых максимальное число независимых уравнений системы меньше числа переменных. Будем полагать, что в системе (6) все m уравнений системы независимы, т.е. m < n.

Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными (базисными), если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные n - m переменных называются неосновными (или свободными).

Основными могут быть разные группы из n переменных, но общее число групп не превосходит число сочетаний .

= n! / ((n-m)! m!)

Пример:

Найти все возможные группы основных переменных в системе

х1 – х2 – 2х3 + х4 = 0 (7)

2х1 + х2 + 2х3 – х4 = 2

 

Решение. Общее число групп основных переменных не более чем = 4*3/2 = 6, т.е. возможны группы основных переменных: х1, х2; х1, х3; х1, х4; х2, х3; х2, х4; х3, х4.

Переменные х1, х2 могут быть основными, т.к. определитель матрицы из коэффициентов при этих переменных = 1 * 1 – 2 * (-1) = 3 ¹ 0. рассуждая аналогично, можно найти, что могут быть основными переменные х1, х3; х1, х4, но не могут быть основными х2, х3; х2, х4; х3, х4, т.к. соответствующие определители равны 0.

х3, х4 = (-2) * (-1) – 2 * 1 = 0.

Существует теорема. Если для системы из m линейных уравнений с n переменными ((m < n) существует хотя бы одна группа основных переменных, то эта система является неопределенной, причем каждому произвольному набору значений неосновных переменных соответствует одно решение системы.

Пусть, например, х1, х2, …, хm – основные переменные (если это не так, то нумерацию можно изменить), то определитель матрицы

¹ 0.

Оставим в левых частях уравнений системы (6) члены с переменными х1, х2, …, хm, а члены с переменными xm+1, xm+2, …, xn перенесем в правые части. Получим:

а11*Х1 + а12*Х2 + …+ а1m*Xm = В1 - а1m+1*Xm+1 - … - а1n*Xn

а21*Х1 + а22*Х2 + …+ а2m*Xm = В2 – а2m+1*Xm+1 - … - а2n*Xn

…………………………………………………………………….

аm1*Х1 + аm2*Х2 + …+ аmm*Xm = Вm - аmm+1*Xm+1 - … - аmn*Xn

 

Задавая неосновным переменным xm+1, xm+2, …, xn произвольные значения, каждый раз будем получать новую систему с новыми свободными членами. Каждая из полученных систем будет иметь один и тот же определитель, т.е. каждая из систем будет иметь единственное решение. Так как получаемых таким образом систем бесконечное множество, то и система (6) будет иметь бесконечное множество решений.

Решение Х = (х1, х2, …, хn) системы (6) называется допустимым, если оно содержит лишь неотрицательные компоненты, т.е. Хj >=0 для любых j = 1, 2, …, n. В противном случае решение называется недопустимым.

Среди бесконечного множества решений системы выделяют базисные решения.

Базисным решением (БР) системы m линейных уравнений с n переменными называют решение, в котором все n – m неосновных переменных равны нулю.

В задачах ЛП особый интерес представляют допустимые базисные решении (ДБР), или, как их еще называют, опорные планы. Число базисных решений является конечным, т.к. оно равно числу групп основных переменных, не превосходящему . Базисное решение, в котором хотя бы одна из основных переменных равна нулю, называется вырожденным.

Пример:

В примере (7) существует три группы основных переменных, т.е. число базисных решений = 3.

Первое х1 и х2 – основные, х3 и х4 – неосновные (= 0), тогда

х1 – х2 = 0

2х1 + х2 = 2

откуда х1 =2/3; х2 = 2/3. следовательно первое баз решение системы Х1 = (2/3; 2/3; 0; 0) –допустимое.

Если взять за основные переменные Х1 и Х3, то получим второе баз решение системы Х2 = (2/3; 0; 2/3; 0) – также допустимое. Аналогично можно найти третье баз решение при основных переменных х1, х4 Х3 = (2/3; 0; 0; -2/3) – недопустимое.

Вывод: Совместная система (6) имеет бесконечно много решений, из них базисных решений – конечное число, не превосходящее .

– Конец работы –

Эта тема принадлежит разделу:

Линейное программирование

А х а х a nxn b... при n является плоскостью а при n gt ее обобщением в n мерном...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Система m линейных уравнений с n переменными

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейное программирование
Оптимизационная задача была сформулирована в общем виде: найти переменные х1, х2, …, хп, удовлетворяющие системе неравенств (уравнений) φi

Понятие экономико-математической модели
Существует много различных определений понятия «модель», отличающихся друг от друга. Но это понятие знакомо каждому: игрушечный корабль – модель корабля, фотоснимок пейзажа, географическая карта –

Задача об использовании ресурсов (задача планирования производства).
Для изготовления двух видов продукции П1 и П2 используют три вида ресурсов Р1, Р2 и Р3. Известны запасы этих ресурсов В1, В2 и В3 и число единиц ресурсов, затрачиваемых на изготовление единицы кажд

Задача о раскрое материалов.
На раскрой (распил, обработку) поступает материал одного образца в количестве А единиц. Требуется изготовить из него L разных комплектующих изделий в количествах, пропорциональных числам b1, b2, …

Геометрический смысл решений неравенств, уравнений и их систем
Теорема 1. Множество решений неравенства с двумя переменными а11х1 + а12х2 <= b1 является одной из двух полуплоскостей, на которые вся плоскость делится прямой а11х1 + а12х2 = b1, вкл

Является выпуклым многоугольником (или выпуклой многоугольной областью).
Каждое из неравенств в соответствии с теоремой 1 определяет одну из полуплоскостей, являющуюся выпуклым множеством точек (из математики: выпуклое множество точек – если оно вместе с любыми двумя св

Свойства задач ЛП
Выше в лекции по ЛП было показано, что любая задача ЛП м.б. представлена в виде общей, канонической или стандартной задачи. Причем, от одной задачи можно перейти к другой. Будем рассматрив

Геометрический метод решения задач ЛП
Итак, выше было доказано, что множество допустимых решений (многогранник решений) ЗЛП представляет собой выпуклый многогранник (или выпуклую многогранную область), а оптимальное решение задачи нахо

Симплексный метод
Выше были рассмотрены основные теоремы ЛП. Из них следует, что если ЗЛП имеет оптимальное решение, то оно соответствует хотя бы одной точке многогранника решений и совпадает хотя бы с одним из допу

Нахождение оптимума линейной функции
Пример: Решим симплексным методом задачу: F=2x1 + 3х2 à maxпри ограничениях: х1 + 3х2 &l

Особые случаи симплексного метода
Неединственность оптимального решения (альтернативный оптимум): Решим симплексным методом задачу: F=3x1 + 3х2 à max

Симплексные таблицы
Практические расчеты с использованием симплекс метода – на компьютере. Если вручную, то используются симплекс-таблицы. Будем решать задачу на максимум. I. После введения добавочных перемен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги