рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ИЗМЕРЕНИЕ ИНФОРМАЦИИ В ТЕХНИКЕ

ИЗМЕРЕНИЕ ИНФОРМАЦИИ В ТЕХНИКЕ - раздел Информатика, Информационный процесс в автоматизированных системах Измерение Информации В Технике. В Технике Информацией Считается Любая Храняща...

ИЗМЕРЕНИЕ ИНФОРМАЦИИ В ТЕХНИКЕ. В технике информацией считается любая хранящаяся, обрабатываемая или передаваемая последовательность знаков, символов.

В технике под количеством информации понимают количество кодируемых, передаваемых или хранимых символов. Определить понятие «количество информации» сложно. В решении этой проблемы существуют два основных подхода. Исторически они возникли почти одновременно. В конце 40-х годов XX века Клод Шеннон развил вероятностный подход к измерению количества информации, работы по созданию ЭВМ привели к «объемному» подходу. В технике используют простой способ определения количества информации, названный объемным, основанный на подсчете числа символов в сообщении, не связан с его длиной и не учитывает содержания.

Пример: собака – 6 символов, dog – 3 символа. Человеку привычно работать с символами, а компьютеру - с кодами. Каждый символ кодируется двоичным кодом, длиной в 8 знаков (восьмибитный код). Прежде чем измерить информацию в битах, вы определяете количество символов в этом сообщении. Каждый символ не случайно кодируется 8-битным кодом.

Для удобства введена более "крупная" единица информации в технике – байт, с помощью которой легче подсчитать количество информации в техническом сообщении - оно совпадает с количеством символов в нем. В вычислительной технике: бит (binary digit) - двоичный знак двоичного алфавита {0, 1}, минимальная единица измерения информации. Байт (byte) - единица количества информации в системе СИ. Байт - восьмиразрядный двоичный код, с помощью которого можно представить один символ. Единицы измерения информации в вычислительной технике: Бит Элементарная единица информации Байт (б) 8 бит Килобайт (Кбайт) 210 байт = 1024 байт Мегабайт (Мбайт) 210 Кбайт = 220 байт Гигабайт (Гбайт) 210 Мбайт = 230 байт Терабайт (Тбайт) 1024 Гбайт = 240 байт Петабайт (Пбайт) 1024 Тбайт = 250 байт Эксабайт (Эбайт) 1024 Пбайт = 260 байт Информационный объем сообщения (информационная емкость сообщения) - количество информации в сообщении, измеренное в битах, байтах, производных единицах (Кб, Мб и т.д.) [2]. Длина сообщения зависит от числа различных символов, употребляемых для записи сообщения.

Например, слово "мир" в русском алфавите записывается тремя знаками, в английском - пятью (peace), а в КОИ-8 - двадцатью четырьмя битами (11101101111010010010). 2.3. ИЗМЕРЕНИЕ ИНФОРМАЦИИ В ТЕОРИИ ИНФОРМАЦИИ (ИНФОРМАЦИЯ КАК СНЯТАЯ НЕОПРЕДЕЛЕННОСТЬ) В теории информации количеством информации называют числовую характеристику сигнала, не зависящую от его формы и содержания и характеризующую неопределенность, которая исчезает после получения сообщения в виде данного сигнала - в этом случае количество информации зависит от вероятности получения сообщения о том или ином событии.

Для абсолютно достоверного события (событие обязательно произойдет, поэтому его вероятность равна 1) количество вероятности в сообщении о нем равно 0. Чем вероятнее событие, тем больше информации о нем несет сообщение.

Лишь при равновероятных ответах ответ "да" или "нет" несет 1 бит информации. Оценка количества информации основывается на законах теории информации.

Сообщение имеет ценность, несет информацию, когда мы узнаем и понимаем смысл данного сообщения. Какое количество информации содержится, к примеру, в тексте романа "Война и мир", в фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является вывод: в определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных.

Теория информации как самостоятельная научная дисциплина была основана Клодом Шенноном в конце 40-х годов 20 века. Предложенная им теория основывалась на фундаментальном понятии количественной меры неопределенности – энтропии и связанного с нею понятия количества информации. Сигнал – это материальный носитель информации (предмет, явление, процесс) в пространстве и во времени.

Любой сигнал неразрывно связан с определенной системой, которая является системой связи или системой передачи информации и состоит из следующих модулей: источник, передатчик, канал связи, приемник и адресат. Источник информации задает некоторое множество сообщений. Генерация определенного сообщения заключается в выборе его из множества всех возможных. Сообщения бывают дискретными и непрерывными. Светофор или передача сообщения с помощью азбуки Морзе – примеры дискретного сигнала.

Особым видом сигналов являются знаки, которые в отличие от сигналов естественного происхождения создаются самоорганизующимися системами и предназначаются для передачи и хранения информации. Есть знаки, входящие в четко организованную систему, и внесистемные знаки. Например: знаки дорожного движения, система цветов светофора, музыка, речь и языки, как естественные, так и искусственные. Внесистемные знаки – это или остатки некогда существовавших знаковых систем, или знаки, созданные временно, обычно в небольших коллективах людей.

Например, языки жестов и поз. В теории информации и кодировании принят энтропийный подход к измерению информации, который основан на том, что факт получения информации всегда связан с уменьшением разнообразия или неопределенности (энтропии) системы. Неопределенность может быть интерпретирована в смысле того, насколько мало известно наблюдателю о данной системе, энтропия системы снизилась, так как для наблюдателя система стала более упорядоченной.

При энтропийном подходе под информацией понимается количественная величина исчезнувшей в ходе какого-либо процесса (испытания, измерения и т.д.) неопределенности. При этом в качестве меры неопределенности вводится энтропия [1]. Энтропия – мера внутренней неупорядоченности информационной системы. Энтропия увеличивается при хаотическом распределении информационных ресурсов и уменьшается при их упорядочении.

На основе понятий энтропии и количества информации в теории информации введены важные характеристики сигналов и информационных систем: скорость создания информации; скорость передачи информации; избыточность; пропускная способность каналов связи. Одним из самых замечательных результатов теории информации является доказательство, что при любых помехах и шумах можно обеспечить передачу информации без потерь. Первая теорема Шеннона гласит, что при скорости создания информации меньшей пропускной способности канала можно передавать информацию со сколь угодно малой вероятностью ошибок, несмотря на шумы. Шеннон сформулировал энтропию как меру хаоса в противовес количеству информации как меры упорядоченности структур.

Рассмотрим некоторую сложную систему и проследим ее эволюцию. Пусть эта система представляет собой находящийся в сосуде газ, состоящий из огромного числа беспорядочно движущихся молекул. Мы не знаем точного положения и скорости в каждый момент времени каждой частицы газа, но нам известны макропараметры: давление, объем, температура и состав газа. Фактически мы должны рассчитать число способов, которыми можно осуществить внутренние перестройки в системе, чтобы наблюдатель не заметил изменений макросостояния системы.

При этом предполагается неотличимость атомов друг от друга. Если в системе, состоящей из одного атома, произошло его энергетическое возбуждение, нам это может стать известно по значению температуры. При этом возможно только одно распределение возбуждения в системе равному единице.

Энтропия связана с распределением следующим образом: . В нашем случае, а значит, система обладает нулевой энтропией. В системе из ста атомов, распределение возбуждения может быть осуществлено ста способами, т.е. , . Энтропия системы выросла и стала хаотичной, поскольку мы не знаем, где находится в каждый момент возбужденный атом. Принято считать, что любая система стремится к состоянию равновесия, т.е. растет энтропия системы. Однако второе начало термодинамики (закон сохранения энтропии и информации) требует компенсировать рост энтропии.

Информация и является средством компенсации. В настоящее время получили распространение подходы к определению понятия "количество информации" , основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте. Р. Хартли предложил в качестве меры неопределенности логарифм от числа возможностей, т.е. процесс получения информации рассматривает как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определяет как двоичный логарифм N: - формула Хартли.

Обычно количество информации представляется в виде: , где m - число возможных выборов. Тогда стандартной единицей количества информации будет выбор из двух возможностей. Такая единица получила наименование бит и представляется одним символом двоичного алфавита: 0 или 1. Пример: нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: .Т. е. сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единиц информации.

Другие примеры равновероятных сообщений: при бросании монеты: "выпала решка", "выпал орел"; на странице книги: "количество букв чётное", "количество букв нечётное". В некоторых случаях, когда однозначно нельзя ответить на вопросы распределения вероятности, для определения количества информации уже нельзя использовать формулу Хартли.

Пример: являются ли равновероятными сообщения "первой выйдет из дверей здания женщина" и "первым выйдет из дверей здания мужчина". Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе.

Формула Шеннона: , где рi - вероятность того, что именно i-е сообщение выделено в наборе из N сообщений. Если вероятности равны, то каждая из них равна 1/N, и формула Шеннона превращается в формулу Хартли. 3. КОДИРОВАНИЕ ИНФОРМАЦИИ Кодирование информации - это процесс формирования определенного представления информации [3]. В более узком смысле под термином кодирование часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (звуки, изображения, показания приборов и т.д.) для обработки на компьютере должна быть преобразована в числовую форму. Чтобы перевести в числовую форму музыкальный звук, можно через небольшие промежутки времени измерять интенсивность звука на определенных частотах, представляя результаты каждого измерения в числовой форме.

Аналогичным образом можно обрабатывать текстовую информацию. При вводе в компьютер каждая буква кодируется определенным числом, при выводе на внешние устройства для восприятия человеком по этим числам строятся изображения букв. Соответствие между набором букв и числами называется кодировкой символов. Одну и ту же информацию можно выразить разными способами. Например, каким образом вы можете сообщить об опасности? Если на вас напали, вы просто можете крикнуть: «Караул » Если прибор находится под высоким напряжением, то требуется оставить предупреждающий знак; На оживленном перекрестке регулировщик помогает избежать аварии с помощью жестов. В театре пантомимы вся информация передается только с помощью мимики и жестов.

Если ваш корабль тонет, то вы передаете сигнал «SOS». На флоте используют семафорную и флажковую сигнализацию. В каждом из этих примеров мы должны знать правила, по которым можно отобразить информацию об опасности тем или иным способом.

Правила, по которым можно отобразить информацию тем или иным способом, называются кодом. Обычно каждый образ при кодировании представлен отдельным знаком. Знак – это элемент конечного множества, отличных друг от друга элементов. Знак вместе его смыслом называется символом. Набор знаков, в котором определен их порядок, называется алфавитом. Мощность алфавита - количество используемых в нем символов. Существует множество алфавитов: алфавит кириллических букв (А, Б, В, Г, Д, …); алфавит латинских букв (A, B, C, D, …); алфавит десятичных цифр (1, 2, 3, 4,…,9, 0); алфавит знаков зодиака и др. Имеются, однако, наборы знаков, для которых нет какого-то общепринятого порядка: набор знаков азбуки Брайля (для слепых); набор китайских иероглифов; набор знаков планет; набор знаков генетического кода. Особенно важное значение имеют наборы, состоящие всего из двух знаков: пара знаков (+, -); пара знаков «точка», « тире»; пара цифр (0, 1); пара ответов (да, нет). Наборы знаков, состоящие из 2 символов, называют двоичными - двоичный алфавит (0, 1), двоичный знак получил название БИТ. С появлением электрического телеграфа возникли важнейшие технические коды: азбука МОРЗЕ; набор знаков второго международного телеграфного кода (телекс). Код используется для представления информации в виде, удобном для хранения и передачи.

Например, для того чтобы закодировать ряд чисел от 0 до 100, во-первых, нужно выбрать какой-то алфавит. Если для каждого числа придумать символ, который будет его обозначать, то потребуется 101 символ.

А если чисел будет больше, то данный подход нерационален.

Если каждое число представить (закодировать) не одним, а несколькими знаками из нашего алфавита, то в нашем правиле появится понятие длина кода. Длиной кода – это такое количество знаков, которое используется при кодировании для представления символа. Количество символов в алфавите и длина кода – совершенно разные вещи. Например, в русском алфавите 33 буквы, а слова могут быть длиной в 1, 2, 3 и т.д. буквы.

Коды бывают постоянной и переменной длины. Коды переменной длины применяются в технике довольно редко. Исключением лишь является код МОРЗЕ. Азбука МОРЗЕ – это троичный код с набором знаков: точка, тире, пауза. Паузу необходимо использовать в качестве разделителя между буквами и словами, так как длина кода непостоянна. Если бы длина кода была постоянной, то расположение символов можно было устанавливать при помощи отсчета. В этом случае пауза не нужна.

Сообщение будет раскодировано однозначно. Применение кодов с постоянной длиной позволяет использовать для кодирования всего лишь два знака (двоичный код). Чем меньше букв в алфавите, тем должно быть проще устройство для раскодирования (расшифровки) информационного сообщения. Чем меньше букв в алфавите, тем больше должна быть длина кода. В процессе развития человеческого общества люди выработали большое число языков кодирования: разговорные языки (русский, английский, хинди и др.); язык мимики и жестов; язык рисунков и чертежей; язык науки (математические, химические и другие символы); язык искусства (музыки, живописи, скульптуры и др.); специальные языки (эсперанто, морской семафор, азбука Морзе, азбука Брайля для слепых и др.); языки программирования (Бейсик, Паскаль, Фортран, Си и др.). Программирование – это кодирование информации на языке, «понятном» компьютеру. В компьютерах используется двоичная форма представления данных.

Троичное кодирование, несмотря на ряд технических попыток, успеха не имело.

Четверичное кодирование в криптографических целях (криптография – тайнопись) использовалось еще в XV веке. Передача сообщения всегда осуществляется во времени. Кодирование требует определенного количества времени, которым зачастую нельзя пренебрегать. При кодировании могут ставиться определенные цели и применяться различные методы. Наиболее распространенные цели кодирования: экономность (уменьшение избыточности сообщения, повышение скорости передачи или обработки информации); надежность (защита от случайных искажений); сохранность (защита от нежелательного доступа к информации); удобство физической реализации (двойное кодирование информации в компьютере); удобство восприятия (схемы, таблицы). 3.1. КОДИРОВАНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ В современных компьютерах используется двоичная форма представления данных, содержащая всего две цифры – 0 и 1. Такая форма позволяет создать достаточно простые технические устройства для представления (кодирования) и распознавания (дешифровки) информации.

Двоичное кодирование выбрали потому, чтобы максимально упростить конструкцию декодирующей машины, ведь дешифратор должен уметь различать всего два состояния – 0 и 1. Например, 1 - есть ток в цепи, 0 – нет тока в цепи. По этой причине двоичная система и нашла такое широкое распространение.

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т.е. используется алфавит мощностью два (всего два символа 0 и 1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком.

Вид информации Двоичный код Числовая 10110011 Текстовая Графическая Звуковая Видео Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда - 4 бита и т.д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде. 3.2.

– Конец работы –

Эта тема принадлежит разделу:

Информационный процесс в автоматизированных системах

В ходе эволюции человечества просматривается устойчивая тенденция к автоматизации этих процессов, хотя их внутреннее содержание по существу осталось… Человек живет в мире информации и на протяжении всей жизни участвует во… Основными информационными процессами являются: поиск, сбор, хранение, передача, обработка, использование и защита…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ИЗМЕРЕНИЕ ИНФОРМАЦИИ В ТЕХНИКЕ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КОДИРОВАНИЕ ТЕКСТОВОЙ ИНФОРМАЦИИ
КОДИРОВАНИЕ ТЕКСТОВОЙ ИНФОРМАЦИИ. Большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Для того чтоб

КОДИРОВАНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ
КОДИРОВАНИЕ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ. В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компью

КОДИРОВАНИЕ ЗВУКА
КОДИРОВАНИЕ ЗВУКА. Из курса физики вам известно, что звук - это колебания воздуха. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с те

КОДИРОВАНИЕ ЧИСЕЛ
КОДИРОВАНИЕ ЧИСЕЛ. Существуют два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в

ЧТО ТАКОЕ СИСТЕМА СЧИСЛЕНИЯ
ЧТО ТАКОЕ СИСТЕМА СЧИСЛЕНИЯ. Системой счисления называется совокупность приемов наименования и записи чисел [7]. Система счисления - это способ представления любого числа с помощью некоторого алфав

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги