рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Этап автоформализации знаний

Этап автоформализации знаний - раздел Информатика, Информатика как наука: развитие и перспективы Этап Автоформализации Знаний. Этот Этап Тесно Связан С Развитием Когнитологии...

Этап автоформализации знаний. Этот этап тесно связан с развитием когнитологии, персональных компьютеров и вычислений, делающих возможным формальное описание (а, следовательно, актуализацию, передачу, хранение, сжатие) исследователями накопленного знания, опыта, профессиональных умений и навыков.

Развиваются когнитивные методы и средства, позволяющие строить решения проблем “по ходу решения, на лету”, особенно эффективно в тех случаях, когда исследователю неизвестен путь решения. Развиваются методы виртуализации и визуализации.

Этот этап очень важен для информатики, ибо он стал позволять решать межпредметные задачи, как правило, плохо структурируемые и формализуемые, а также позволил использовать типовые инструментальные системы. Используется когнитивная графика – графика, порождающая новые решения, а также “виртуальный мир” – искусственное трехмерное пространство (одну из осей координат можно условно считать “пространственной”, другую - “временной”, третью - “информационной”) и визуальные среды (например, Visual-среды). 2. Структура 2.1 Теоретическая информатика Теоретическая информатика – это научная область, предметом изучения которой являются информация и информационные процессы; в которой осуществляется изобретение и создание новых средств работы с информацией.

Как любая фундаментальная наука, теоретическая информатика (в тесном взаимодействии с философией и кибернетикой) занимается созданием системы понятий, выявлением общих закономерностей, позволяющих описывать информацию и информационные процессы, протекающие в различных сферах (в природе, обществе, человеческом организме, технических системах). 2.2 Математическая логика Математическая логика (теоретическая логика, символическая логика) — раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен.» Согласно определению П. С. Порецкого, «математическая логика есть логика по предмету, математика по методу». Согласно определению Н. И. Кондакова, «математическая логика — вторая, после традиционной логики, ступень в развитии формальной логики, применяющая математические методы и специальный аппарат символов и исследующая мышление с помощью исчислений (формализованных языков).» Это определение соответствует определению С. К. Клини: математическая логика — это «логика, развиваемая с помощью математических методов». Так же А. А. Марков определяет современную логику «точной наукой, применяющей математические методы». Все эти определения не противоречат, но дополняют друг друга.

Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке.

Такие точные языки имеют две стороны: синтаксис и семантику.

Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантикой называется совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие — нет. 2.3 Теория информации Теория информации (математическая теория связи) — раздел прикладной математики, определяющий понятие информации, её свойства и устанавливающий предельные соотношения для систем передачи данных.

Как и любая математическая теория, оперирует с математическими моделями, а не с реальными физическими объектами (источниками и каналами связи). Использует, главным образом, математический аппарат теории вероятностей и математической статистики. Основные разделы теории информации — кодирование источника (сжимающее кодирование) и канальное (помехоустойчивое) кодирование.

Теория информации тесно связана с криптографией и другими смежными дисциплинами. 2.4 Системный анализ Системный анализ — научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Системный анализ возник в эпоху разработки компьютерной техники. Успех его применения при решении сложных задач во многом определяется современными возможностями информационных технологий. Н.Н. Моисеев приводит, по его выражению, довольно узкое определение системного анализа [1]: «Системный анализ — это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем — технических, экономических, экологических и т.д. Результатом системных исследований является, как правило, выбор вполне определенной альтернативы: плана развития региона, параметров конструкции и т.д. Поэтому истоки системного анализа, его методические концепции лежат в тех дисциплинах, которые занимаются проблемами принятия решений: теории операций и общей теории управления». 2.5 Кибернетика Кибернетика (от греч. kybernetike — «искусство управления», от греч. kybernao — «правлю рулём, управляю», от греч. КхвеснЮфзт — «кормчий») — наука об общих закономерностях процессов управления и передачи информации в машинах, живых организмах и обществе.

В теории информации термин кибернетика впервые был предложен Норбертом Винером в 50-х годах. 2.6 Биоинформа́тика Биоинформа́тика или вычисли́тельная биоло́гия — одна из дисциплин биологии, развивающая использование компьютеров для решения биологических задач.

Под биоинформатикой понимают любое использование компьютеров для обработки биологической информации.

На практике, иногда это определение более узкое, под ним понимают использование компьютеров для обработки экспериментальных данных по структуре биологических макромолекул (белков и нуклеиновых кислот) с целью получения биологически значимой информации. Термины биоинформатика и вычислительная биология часто употребляются как синонимы, хотя последний чаще указывает на разработку алгоритмов и конкретные вычислительные методы. Считается, что не всякое использование вычислительных методов в биологии является биоинформатикой, например, математическое моделирование биологических процессов — это не биоинформатика. 2.7 Программи́рование Программи́рование — процесс и искусство создания компьютерных программ и/или программного обеспечения с помощью языков программирования.

Программирование сочетает в себе элементы искусства, фундаментальных наук (прежде всего информатика и математика), инженерии, спорта и ремесла. В узком смысле слова, программирование рассматривается как кодирование алгоритмов на заданном языке программирования. Под программированием также может пониматься разработка логической схемы для ПЛИС, а также процесс записи информации в ПЗУ. В более широком смысле программирование — процесс создания программ, то есть разработка программного обеспечения. 3. Кибернетика и информатика Современная кибернетика началась в 1940-х годах как междисциплинарные исследования, соединяющее области систем управления, теории электрических цепей, машиностроения, логического моделирования, эволюционной биологии, неврологии.

Системы электронного управления берут начало с работы инженера Bell Telephone Laboratories Harold S. Black в 1927 году по использованию отрицательной обратной связи, для управления усилителями.

Идеи также имеют отношения к биологической работе Ludwig von Bertalanffy в общей Теории Систем. Ранние применения отрицательной обратной связи в электронных схемах включали контроль артиллерийских установок и радарной антенны во время Второй Мировой Войны. Jay Forrester, аспирант в Лаборатории Сервомеханизмов в Массачусетском технологическом институте, работавший во время Второй Мировой Войны с Gordon S. Brown, над совершенствованием систем электронного управления для американского Флота, позже применил эти идеи к общественным организациям, таким как корпорации и города как первоначальный организатор Школы Индустриального Управления Массачусетского технологического института в MIT Sloan School of Management.

Forrester известен как основатель Системной Динамики.

W. Edwards Deming, гуру комплексного управления качеством, для которого Япония назначила свою главный послевоенный индустриальный приз, был молодым специалистом в Bell Telephone Laboratories в 1927 и, возможно, был под влиянием сетевой теории (по-русски — Сетевой анализ). Deming сделал «Понимающие Системы» одним из четырёх столпов того, что он описал как «Глубокое Знание» в его книге «Новая Экономика». Многочисленные работы возглавляли соединение в этой области.

В 1935 российский физиолог Анохин Пётр Кузьмич издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследование и математическое моделирование регулирующих процессов стали продолжительным исследовательским усилием, и две ключевых статьи были опубликованы в 1943. Этими работами были «Поведение, Цель и Телеология» Arturo Rosenblueth, Norbert Wiener, и Julian Bigelow; и работа «Логическое Исчисление Идей, Постоянных в Возбуждённой Деятельности» Warren McCulloch и Walter Pitts. Кибернетика как дисциплина была твёрдо установлена Wiener, McCulloch и другими, такими как W. Ross Ashby и W. Grey Walter.

Walter был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Вместе с США и Великобританией, важным географическим местоположением ранней кибернетики была Франция. Весной 1947, Wiener был приглашён на конгресс по гармоническому анализу, проведённому в Nancy, Франция.

Мероприятие было организовано Bourbaki, французским научным обществом, и математиком Szolem Mandelbrojt (1899—1983), дядей всемирно известного математика Benoît Mandelbrot. Во время этого пребывания во Франции Wiener получил предложение написать сочинение на тему объединения этой части прикладной математики, которая найдена в исследовании Броуновского движения и в телекоммуникационной инженерии. Следующим летом, уже в Соединённых Штатах, Wiener решил ввести неологизм кибернетика в свою научную теорию.

Название Кибернетика было придумано, чтобы обозначить исследование «целенаправленных механизмов» и было популяризировано через его книгу Кибернетика, или исследование контроля и коммуникации животного и машины. (Hermann & Cie, Париж, 1948). В Великобритании это стало центром для Ratio Club. В начале 1940-ых Джон фон Нейман, более известный по его работам в математике и информатике, внёс уникальное и необычное дополнение в мир кибернетики: клеточные автоматы фон Неймана, и их логическое продолжение Универсальный Конструктор фон Неймана.

Результатом этих обманчиво простых мысленных экспериментов стало понятие самовоспроизводства, который кибернетика приняла как основное понятие. Понятие, что те же самые свойства генетического воспроизводства относились к социальному миру, живым клеткам, и даже компьютерным вирусам, является дальнейшим доказательством несколько удивительной универсальности кибернетических исследований. Wiener популяризировал социальные значения кибернетики, проведя аналогии между автоматическими системами (такими как регулируемый паровой двигатель) и человеческими институтами в его бестселлере The Human Use of Human Beings: Cybernetics and Society (Houghton-Mifflin, 1950). В то время как не мало исследовательских организаций сосредоточились на кибернетике, Биологическая Компьютерная Лаборатории в университете Иллинойса, Urbana-Champaign, под руководством Heinz von Foerster, была главным центром кибернетических исследований в течение почти 20 лет, начиная с 1958 г В течение прошлых 30 лет кибернетика прошла цикл взлётов и падений, становясь всё более значимой в области искусственного интеллекта и биологических машинных интерфейсов (то есть киборгов), и когда это исследование лишилось поддержки, область в целом сбилась со своего основного направления.

В 1970-ых новая кибернетика проявилась во многих областях, сначала в биологии.

Некоторые биологи под влиянием кибернетических понятий (Maturana и Varela, 1980; Varela, 1979; Atlan, 1979), осознали, что кибернетические метафоры программы, на которых базировалась молекулярная биология, представляли собой концепцию автономии невозможную для живого существа.

Следовательно, этим мыслителям пришлось изобрести новую кибернетику, более подходящую для организаций, которые человечество обнаруживает в природе — организации, которые он самостоятельно не изобрёл. Возможность того что эта новая кибернетика могла также составлять социальные формы организации, оставалась объектом дебатов среди теоретиков на самоорганизации в 1980-ых. В политологии Проект Cybersyn попытался ввести кибернетически административно-командную экономику в течение начала 1970-ых. В 1980-ых, в отличие от её предшественника, новая кибернетика интересуется взаимодействием автономных политических фигур и подгрупп, и практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или само-зависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе себя. Geyer и van der Zouwen в 1978 обсуждали много особенностей появляющейся «новой кибернетики». Одна особенность новой кибернетики — то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой.

Это обеспечивает эпистемологическое основание науки, рассматривая это как зависимое от наблюдателя.

Другая особенность новой кибернетики — свой вклад к соединению «микромакро-промежутка». Таким образом, это связывает человека с обществом.

Geyer и van der Zouwen также отметили, что переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе, к управляющей, и фактору, который направляет управляющие решения.

И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом. Недавние усилия в истинном направлении кибернетики, системы контроля и поведения на стадии становления, в таких смежных областях, как теория игр (анализ группового взаимодействия), и Metamaterials (исследование материалов со свойствами вне ньютоновых свойств их составляющих атомов), системы обратной связи в эволюции, и метаматериал (изучение материалов со свойствами за Ньютоновскими свойства их составных атомов), привели к возрождению интереса в этой всё более актуальной области.

Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество.

Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. 20 в. этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники. Кибернетика является междисциплинарной наукой.

Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания.

– Конец работы –

Эта тема принадлежит разделу:

Информатика как наука: развитие и перспективы

Наши предки на каменных поверхностях пещер, на глиняных дощечках, на пергаменте и папирусе, пытались передать и сохранить свои знания для потомков. Заметим, что осуществлять строительство, проводить научные исследования,… Так постепенно человечество пришло к науке, называемой информатикой. Информа́тика (ср. нем. Informatik, фр.…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Этап автоформализации знаний

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Этап иероглифической символики
Этап иероглифической символики. Изначально носителем информации была речь. Развитие речи, языка - объективный процесс в развитии общества. Как отмечал Ф. Энгельс, “развивающиеся люди развили

Этап абстрактной символики
Этап абстрактной символики. Иероглифическое письмо, хоть и является древнейшим, сохранилось до наших дней в ряде регионов (Китай, Япония, Корея). Его сохранению способствовало удобство, наглядность

Этап книгопечатания
Этап книгопечатания. Книгопечатание было изобретено в Германии в XV в. как массовая деятельность и стало началом нового научного этапа в естествознании (станок Гуттенберга, 1440-1450). Главным каче

Этап математизации и формализации знаний
Этап математизации и формализации знаний. С развитием промышленной революции становится все более острой потребность в создании системы описания и использования профессиональных знаний, введения фу

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги