рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ДРОБОВОЙ ШУМ

ДРОБОВОЙ ШУМ - раздел Информатика, ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ Шум В Лампах В Основном Создается Дробовым Эффектом, Т. Е. Беспорядочными Флу...

Шум в лампах в основном создается дробовым эффектом, т. е. беспорядочными флуктуациями анодного тока около среднего значения, которое показывает амперметр постоянного тока. Термин «дробовой» связан с тем, что электронный ток в лампе напоминает поток дробинок. Если сравнивать количество электронов, вылетевших с катода на анод за отдельные очень короткие промежутки времени одинаковой продолжительности, то вследствие хаотичности эмиссии электронов эти количества будут разными. Различие тем больше, чем короче промежуток времени наблюдения. Поэтому на постоянную составляющую анодного тока будут накладываться флуктуации. Дробовой шум связан с дискретной природой электрического заряда.

Для определения среднего квадрата этих флуктуации необходимо учесть, что процесс вылета электронов при термоионной эмиссии является пуассоновским. Напомним, что пуассоновский процесс может быть определен следующим образом. Пусть некоторое число событий происходит независимо в слу­чайные моменты времени. Если n событий происходит в течение фиксированного временного интервала т, то sn = , где — среднее значение n за время t и функция распределения Р(n) для n является распределением Пуассона

 

 

 

Она определяет вероятность того, что за данный промежуток времени произойдет n таких событий. Примеры таких процессов:

1. Ток насыщения в диоде — электроны имитируются случайно и независимо и в случайные моменты времени.

2. Инжекция электронов в p-область через р--n-переход. Электроны инжектируются независимо в случайные моменты времени.

3. Испускание фотонов лазером — фотоны испускаются независимо и в случайные моменты времени. Следовательно, эти процессы пуассоновские, так как представляют собой последовательность независимых и случайных событий.

Однако процесс излучения черным телом не является пуассоновским, так как фотоны испускаются группами.

Итак, шум термоэлектронного диода в режиме насыщения подчиняется статистике Пуассона, и поэтому для него

 

 

Пользуясь этими формулами, получим количественную оценку флуктуации тока диода. Среднее значение тока через диод будет

 

 

 

Отсюда значение спектральной плотности будет

 

 

где е — заряд электрона. Следовательно,

 

 

Окончательно получим формулу Шоттки для дробового шума диода в режиме насыщения

 

Чем меньше ток Iа, тем больше интервал между элементарными импульсами тока и сильнее проявляется дискретный характер тока. Импульсы тока имеют длительность порядка 5×10-10 с, а средняя длительность интервалов tcр = е/Iа. Это составляет ~10-16—10-17 с при токе =1 мА.

При наличии пространственного заряда происходит уменьшение шума. Пространственный заряд создает минимум потенциала вблизи катода. Тормозящее поле этого потенциального барьера могут преодолеть только электроны, обладающие достаточными скоростями. Флуктуации тока эмиссии катода изменяют пространственный заряд, а тот в свою очередь изменяет число электронов, прошедших через барьер. Увеличение эмиссии катода приводит к увеличению пространственного заряда, в результате чего уменьшается число электронов, преодолевших потенциальный барьер и достигших анода. Таким образом, наличие пространственного заряда автоматически регулирует флуктуации анодного тока, что приводит к депрессии шума. Для ламп с сетками уровень шума может быть охарактеризован шумовым сопротивлением Rш. Шумы лампы эквивалентны тепловому шуму сопротивления в интервале частот, на котором возникают те же флуктуации ЭДС, как и в лампе. Обычно шум лампы выражают через шум сопротивления Rш ,

 

включенного в цепь сетки лампы. Представление шумовых свойств лампы с помощью ЭДС шумов на входе при Rш, включенном в цепь сетки, дано на рис. 7.5. В интервале частот Df шумящая лампа дает на выходе такую же мощность шума, как и идеальная с включенным в цепь сетки сопротивлением. Определим шумовое сопротивление лампы, считая, что оно обусловлено дробовым эффектом. Средний квадрат шумового тока в режиме насыщения определяется формулой Шоттки

 

Можно ввести эквивалентный генератор напряжения Uш на входе с помощью равенства

 

где S — крутизна лампы, — средний квадрат шумового тока на выходе, — средний квадрат эквивалентного шумового напряжения на входе. Эквивалентное шумовое напряжение на входе создается некоторым сопротивлением Rш, включенным в цепь сетки лампы. Тогда средний квадрат шумового тока будет

 

 

Приравнивая это (7.26а), получим

 

 

Таким образом, уровень шумов триодов характеризуется шумовым сопротивлением, на концах которого при комнатной тем­пературе получается напряжение шумов, равное напряжению шумов лампы, пересчитанному в цепь сетки.

Рассмотрим теперь дробовой шум полупроводниковых диодов. Полная характеристика плоскостного диода, как известно, имеет вид

 

 

откуда

 

Переходя к рассмотрению шума, следует учесть, что протекают два тока, ток –I0 и ток IoeeU/kT = I+Io, и каждый из них должен сопровождаться полным дробовым шумом, поскольку каждый ток флуктуирует независимо и каждый из них создает дробовой шум. Следовательно,

 

 

Для точечных диодов получаются такие же результаты, поскольку дробовой шум в полупроводниках генерируется р—n-переходами при приложении электрического поля к переходу, и есть результат дрейфа носителей через барьерные слои. В транзисторах дробовой шум обусловлен тем же механизмом, что и в диодах, т. е. связан с пересечением перехода носителями заряда — электронами, или дырками. Переходы составляют последовательность независимых и случайных событий, поэтому токи в этих приборах создают дробовой шум. Флуктуации числа носителей, переходящих через р—n-переход, так же как и в лампах, связаны с дискретной природой электрического заряда.

 

– Конец работы –

Эта тема принадлежит разделу:

ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ

На сайте allrefs.net читайте: "ЭТАПЫ ОБРАЩЕНИЯ ИНФОРМАЦИИ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ДРОБОВОЙ ШУМ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ
Совокупность средств информационной техники и людей, объединенных для достижения определенных целей или для управления, об

КОЛИЧЕСТВО ИНФОРМАЦИИ
Передача информации инициируется либо самим источником информации, либо осуществляется по запросу. Она диктуется желанием устранить неопределенность относительно последовательности состояний, реали

Передача информации от дискретного источника.
Выясним, насколько будет изменяться неопределенность относительно состояния источника сообщения при получении адресатом элемента сообщения с выхода канала связи. Алфавиты передаваемых и принимаемых

Передача информации от непрерывного источника.
Количество информации, получаемой от непрерывного источника по каналу с помехами, определяется так же, как в случае, рассмотренном выше, но с использованием понятия дифференциальной энтропии.

Свертки
  В одном измерении интеграл свертки двух функций f(х)и g(х) определяется как:

Свойства фурье-преобразований
Если не использовать комплексную экспоненту, то выражение (2.12) можно переписать следующим образом:

Умножение и свертка
Добавим теперь два важных соотношения, представляющих теорему умножения:   (2.29) &

Пространство и время
  Кроме связи между пространственными распределениями f(r) и амплитудами дифракции F(u), фурье-преобразование также связывает изменение функции во вр

Точечный источник или точечная апертура
  Распределение амплитуды при рассеянии от очень малого ис­точника или при прохождении через очень малую апертуру (или щель) в одном измерении можно описать с помощью функции

Трансляция объекта
  Трансляция объекта описывается выражением   (2.37)   здесь и

Функция щели
  Функция прохождения для щели шириной a в непрозрачном экране дается выражением:

Другая форма функции щели
  Проиллюстрируем использование выражения (2.27). Заметим при этом, что для функции щели, которая была определена в разд. 2.3.4, справедливо выражение:

Прямолинейный край
    Для прямолинейного края функция прохождения имеет вид:  

Обобщение преобразований Фурье. Преобразования Лапласа
Некоторые колебания не могут быть представлены интегралом (1.21), так как для них не существует или не определена спектральная функция. Это происходит потому, что колебание не удовлетворяет условию

Операция образования величины
    часто встречается при расчете радиотехнических процессов и называется сверткой ф

Выражение энергии колебания через его спектральную функцию. Спектральная плотность энергии
Пусть Gs (w) является спектральной функцией колебания напряжения s(t). Тогда удельная энергия колебания (энергия, выделяемая на единичном сопротивлении)

Энергия взаимодействия двух колебаний
Пусть сумма колебаний напряжения s1(t) и s2(t), действует на единичном сопротивлении. Найдем выделяющуюся при этом энергию. На основании (1.53) и теорем

Соотношение между длительностью колебанияи шириной его спектра. Определения длительности колебания
При рассмотрении спектральной функции любого импульсного колебания можно установить, что чем сосредоточеннее, короче импульс во времени, тем протяженнее его спектральная функция по частоте, т. е. т

Равномерное распределение.
Пусть некоторая случайная величина X может принимать значения, принадлежащие лишь отрезку x2 ³ x ³ x1, причем вероятности попадания в любые внутренние интерва

Гауссово (нормальное) распределение.
В теории случайных сигналов фундаментальное значение имеет гауссова плотность вероятности (6.9)  

Плотность вероятности функции от случайной величины.
Пусть Y — случайная величина, связанная с X однозначной функциональной зависимостью вида у = f(x). Попадание случайной точки х в интервал шириной dx и попадание случайной точки

Функция распределения и плотность вероятности.
Пусть даны случайные величины {Х1 Х2,…,Хn}, образующие n-мерный случайный вектор X. По аналогии, с одномерным случаем функция распределения этого вектора &

Корреляция.
Предположим, что проведена серия опытов, в результате которых каждый раз наблюдалась двумерная случайная величина {Х1 Х2}. Условимся исход каждого опыта изображать точк

Функциональные преобразования многомерных случайных величин.
Предположим, что составляющие двух случайных векторови

Стационарные случайные процессы
  Среди случайных процессов особое место занимают стационар­ные случайные процессы, имеющие важное значение при рас­смотрении большого числа задач. Случайный процесс называется строго

Квазидетерминированные процессы и случайные процессы
Приведенное в настоящей главе описание случайных процессов может быть использовано не только для помех, но и для сигна­лов в случае, когда параметры сигналов меняются случайным образом на интервале

Предварительные замечания
Высокочастотные колебания, действующие на входе радиопри­емного устройства, при достаточно общих предположениях можно представить в виде

Виды помех
Помехи радиоприему имеют весьма разнообразный и сложный характер, что создает определенные трудности при их классификации. Классификацию помех можно проводить по различным признакам, в частности, м

Зависимость уровня помех от частоты
Вразличных диапазонах частот активные помехи проявляют себя неодинаково. Внутриприемные шумы возникают в широком диапазоне частот, однако только на достаточно высоких частотах (при

Законы распределения помех
Рассмотрим применительно к выходу линейной части прием­ного тракта (УПЧ) модели, определяющие плотности вероятнос­ти следующих видов аддитивных помех: флуктуациопных, импуль­сных, квазиимпульсных и

Случайные процессы как математические модели реальных помех
Реальные помехи, воздействующие на вход радиоприемного устройства, проходя через приемный тракт, включающий линей­ные и нелинейные элементы, подвергаются существенным преоб­разованиям. Выбор элемен

Марковские процессы
Удобной идеализацией реальных помех радиоприему являются марковские случайные процессы. Предыдущее рассмотрение пока­зало, что помехи радиоприему могут быть флуктуациоиными и импульсными. Флуктуаци

Флуктуационные помехи
Флуктуационные помехи занимают особое место среди различ­ных видов помех радиоприему. Значительная часть помех, такие, как тепловые шумы в пассивных элементах приемных устройств, шумы в приемной ан

Спектральная плотность флуктуационных помех
Наряду с функцией корреляции для описания случайных про­цессов широко используется также спектральная плотность g{f), которая характеризует распределение мощности (энергии) поме­хи или сигна

Белый шум
Флуктуационные помехи, для которых в широкой полосе час­тот спектральная плотность постоянна, по аналогии с белым све­том называют белым шумом. При теоретическом рассмотрении вопросов обнару

ТЕПЛОВЫЕ ШУМЫ
Проведем теперь расчет величины спектральной плотности Su шумовой ЭДС на сопротивлении R, вызванной тепловым движением электронов в проводнике, находящемся при температуре Т. Докажем

ГЕНЕРАЦИОННО-РЕКОМБИНАЦИОННЫЙ ШУМ
В полупроводниках и в приборах на их основе наблюдается еще один вид шума, создаваемый спонтанными флуктуациями скоростей генерации, рекомбинации и улавливания носителей, что приводит к флуктуациям

ПРИНЦИП ВЫДЕЛЕНИЯ СИГНАЛА ИЗ ШУМА
Методы выделения сигнала из шума основываются на том, что сигнал, несущий информацию, и шумы имеют разные статистические и спектральные характеристики. Спектр сигнала обычно узкополосный и

СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ
Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисных для представления радиотехнических сигналов, особое место занимают гармонические функции. Важность

Ряды Фурье.
Зададим на интервале времени [-T/2, T/2] ортонормированный базис, образованный гармоническими функциями с кратными частотами:

Преобразование Фурье.
Метод рядов Фурье допускает глубокое и плодотворное обобщение, позволяющее получать спектральные характеристики непериодических сигналов. Среди последних наибольший интерес для радиотехники предста

Понятие спектральной плотности сигнала.
  Воспользуемся тем, что коэффициенты ряда Фурье образуют комплексно-сопряженные пары: ;

Обратное преобразование Фурье.
Решим обратную задачу спектральной теории сигналов: найдём сигнал по его спектральной плотности, которую будем считать заданной. Предположим вновь, что непериодический сигнал получается из

Преобразование Лапласа.
Спектральные методы анализа сигналов основаны на том, что исследуемый сигнал представляется в виде суммы неограниченно большого числа элементарных слагаемых, каждое из которых периодически изменяет

Условия существования преобразования Лапласа. Связь между преобразованиями Фурье и Лапласа.
Пусть - некоторый сигнал, определенный при >

Представление отклика линейной цепи в форме интеграла наложения или свертки.
    Любой детерминированный сигнал можно представить при помощи единичной ступенчатой или единичной импульсной функции, называемой для краткости единичная ступенька и ед

Дискретное представление сигналов. Теорема Котельникова.
    Если в спектре сигнала нет составляющих с частотой выше , то такая частота называется пред

Прохождение сигналов через линейные системы.
Каждое радиотехническое устройство представляет собой систему независимо от своего назначения и уровня сложности, то есть совокупность физических объектов, между которыми существуют определённые вз

Импульсные, переходные и частотные характеристики линейных систем.
  Замечательная особенность линейных систем – справедливость принципа суперпозиции – открывает прямой путь к систематическому решению задач о прохождении разнообразных сигналов через

Вход Выход Вход Выход
h(t) H(x) а) б) Рисунок 5. Схемы линейных систем: а – линейная колебательная система с сосредоточенными параметрами; б - волновой аналог системы.   Н

ДИАГРАММА НАПРАВЛЕННОСТИ ИЗЛУЧАЮЩЕЙ СИСТЕМЫ
Излучающие системы являются преобразующим звеном между электромагнитными волнами, распространяющимися в свободном пространстве, и электромагнитными волнами, распространяющимися в линии передачи. В

Характеристики диаграмм направленности.
Из диаграммы направленности легко определить направление главного максимума, ширину главного лепестка и относительный уровень главных максимумов. Относительный уровень боковых максимумов е

Графическое изображение диаграммы направленности.
Одним из наиболее распространенных способов изображения диаграммы направленности антенн является вычерчивание так называемых полярных диаграмм направленности. Представим ряд векторов, исхо

Двойной физический смысл пространственных частот.
Рассмотрим соотношения, представляющие собой интеграл Фурье для двух пар переменных, и

Фильтрующие свойства свободного пространства
    Рассмотрим сначала функцию, являющуюся двухмерной частотной характеристикой свободного пространства:

СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ
1.1 Ряды Фурье 1.2 Преобразование Фурье 1.3 Понятие спектральной плотности сигнала 1.4 Обратное преобразование Фурье 1.5 Преобразование Лапласа 1.6 Усло

ДИАГРАММА НАПРАВЛЕННОСТИ ИЗЛУЧАЮЩЕЙ СИСТЕМЫ
2.1 Характеристики диаграмм направленности 2.2 Графическое изображение диаграммы направленности 2.3 Двойной физический смысл пространственных частот 2.4 Фильтрующие свойс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги