рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Характерные особенности задач многокритериального выбора

Характерные особенности задач многокритериального выбора - раздел Информатика, РАЗДЕЛ 1.МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ (СОТС   Реальные Задачи Выбора, Возникающие На Практике, Чрезвычайно ...

 

Реальные задачи выбора, возникающие на практике, чрезвычайно разнообразны, но всех их объединяет общая схема поиска решения, суть которой состоит в формировании совокупности операций (процедур), проводимых на множестве допустимых альтернатив, в результате чего выделяется множество наилучших (оптимальных) альтернатив.

Для поиска указанных альтернатив в задачах выбора необходимо задать соответствующие критерии (греч. Kriterion ‑ мерило для оценки), под которыми в дальнейшем понимаются и правила (признаки), позволяющие сопоставлять и сравнивать допустимые альтернативы друг с другом для выбора наилучшей из них. При этом оценивание альтернатив в сложных инженерно-технических задачах, как правило, осуществляется с использованием нескольких критериальных функций. Данные функции в научно-технической литературе часто называют еще целевыми функциями, показателями качества, показателями эффективности.

Можно указать на 4 основных вида задач выбора, при решении которых необходимо использовать многокритериальный подход. Перечислим указанные виды задач многокритериального выбора:

1-й вид задач, в которых окончательное решение, определяет порядок совместных действий нескольких объектов, эффективность функционирования каждого из которых оценивается отдельными критериальными функциями (например, совместная деятельность СТС при выполнении общей задачи);

2-й вид задач, в которых качество принимаемого решения необходимо оценивать для нескольких вариантов условий воздействия среды на СТС и для каждого варианта вводится отдельная оценка;

3-й вид задач, в которых принятие решения осуществляется поэтапно с использованием на каждом этапе своих критериальных функций (например, оценка эффективности жизненного цикла СТС);

4-й вид задач, в которых качество решения необходимо оценивать с нескольких точек зрения ‑ по отдельным компонентам качества. Например, оценка качества выполнения плана работы системы обслуживания активных подвижных объектов (АПО) может характеризоваться временем окончания всех операций взаимодействия на интервале планирования, количеством израсходованных ресурсов системы обслуживания (СО), объемом выполненных операций.

Анализ показывает, что большинство задач выбора, возникающих на практике, принадлежит к одному из перечисленных выше видов задач или является их комбинацией. Таким образом, при создании, исследовании, применении и развитии сложных технических, экономических, организационных, военно-технических систем оценивание качества соответствующих процессов становится возможным только при использовании нескольких показателей (нескольких целевых, критериальных функций). Это приводит, в свою очередь, к появлению в задачах выбора критериальной неопределенности. Рассмотрим пример, иллюстрирующий причины появления указанной критериальной неопределенности при решении задач выбора на практике.

Пример 4.1. При проектировании боевых самолетов следует учитывать различные показатели эффективности их жизненного цикла. К указанным показателям можно в первую очередь отнести:

‑ показатели, характеризующие технологию серийного изготовления самолетов;

‑ показатели, характеризующие затраты на производство, эксплуатацию, применение самолетов;

‑ показатели, характеризующие боевые возможности самолетов (скорость, маневренность, грузоподъемность, количество боезапаса, время полета без дозаправки топливом);

‑ экологические показатели, оценивающие уровень шума, степень загрязнения атмосферы при полетах самолетов создаваемой серии;

‑ эргономические показатели, характеризующие условия работы экипажа и т.п.

Следует подчеркнуть, что подобного рода примеров можно привести очень много (далее в данной и последующих главах будут приводиться еще ряд примеров постановки задач многокритериального выбора). Даже в обыденной жизни каждый человек при определении места работы или отпуска испытывает затруднения, связанные с наличием нескольких противоречивых критериев, на основании которых нужно принять окончательное решение.

Одна из главных особенностей задач многокритериального выбора состоит в том, что данные задачи не являются корректными в рамках аксиоматики, принятой в классической теории оптимизации и принятия решения. В самом деле, если взять условия примера 4.1, то формальная постановка задачи многокритериального выбора сводится к следующему. Пусть вектор характеризует основные параметры проектируемого самолета, возможные значения которых задаются множеством допустимых альтернатив . Качество проектирования самолета оценивается m-скалярными критериальными функциями , содержательная интерпретация которых приводилась выше (см. условия примера 4.1). Образуем из данных функций вектор .

В указанных условиях задача многокритериального выбора сводится к поиску такого вектора , при котором

(4.1)

 

или по-другому

. (4.2)

 

Условие существования решения (4.1) или (4.2) может быть записано как условие совпадения решения -частных задач поиска экстремума по каждому -му показателю качества на множестве :

, (4.3)

 

где .

Выполнение условия (4.3) возможно лишь в случае непротиворечивости частных показателей качества проектирования самолета. Однако, как показывает содержательный анализ примера 4.1, указанные показатели являются сугубо противоречивыми и оптимизация параметров проектирования самолета по каждому из них приводит к альтернативным (несовпадающим) решениям.

Таким образом, постановка задачи (4.1) является не корректной в рамках аксиоматики классической теории экстремальных задач.

Некорректность задач многокритериального выбора обуславливает необходимость использования для ее решения соответствующих этапу классу задач методов. Известно, что основу таких методов составляет регуляризация-доопределение (уточнение) задачи путем привлечения дополнительной качественной и количественной информации о свойствах критериальных функций, об альтернативах, о принципах оптимальности и т.п. В рассматриваемом примере на основе дополнительной информации должен быть доопределен принцип оптимальности и методы его реализующие таким образом, чтобы в регуляризованной задаче выполнялись все условия корректности.

Вторая особенность задач многокритериального выбора состоит в том, что основным источником дополнительной информации при поиске наилучших альтернатив являются эксперты (Э), хорошо знающие заданную предметную область, и лицо, принимающее решение, преследующее определенную цель (цели), в интересах достижения которой и решается рассматриваемая задача. ЛПР, как и эксперты, должно быть компетентным специалистом в соответствующей предметной области, обладать опытом деятельности в ней, а также должно быть наделено необходимыми полномочиями.

Следует отметить, что в ряде случаев дополнительная информация в задачах многокритериального выбора может быть получена и от других источников (например, на основе анализа результатов системного моделирования).

Третья особенность задач многокритериального выбора заключается в том, что в данных задачах множество допустимых альтернатив и множество частных отношений предпочтений может задаваться как непосредственно, так и с использованием соответствующих функций, функционалов, операторов и т.п. Возможен комбинированный (смешанный) вариант задания множества допустимых альтернатив и отношений предпочтения. Отметим, что очень часто критериальные функции имеют различные масштабы измерения и их сравнение становится трудным, а в ряде ситуаций даже невозможным. Поэтому данные критериальные функции необходимо приводить к единому масштабу измерения или, другими словами, нормализовать их.

Таким образом, основные особенности и соответствующие проблемы, связанные с решением задач многокритериальной оптимизации, имеют скорее не вычислительный, а концептуальный характер, т.к. невозможно строго математически доказать, что выбранная в конкретных условиях ЛПР альтернатива из числа недоминируемых (неулучшаемых одновременно по всем показателям) является наилучшей. В другой ситуации ЛПР может выбрать другую недоминируемую альтернативу. Указанное положение можно считать основной аксиомой в задачах принятия многокритериальных решений.

Для корректного решения на практике перечисленных выше проблем необходимо уметь строить математические модели многокритериальной оптимизации и обоснованно применять для поиска «наилучших» альтернатив соответствующие методы и алгоритмы оптимального выбора.

Первым шагом в процессе построения указанных математических моделей является их обобщенное теоретико-множественное описание.

 

– Конец работы –

Эта тема принадлежит разделу:

РАЗДЕЛ 1.МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ (СОТС

РАЗДЕЛ МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО ТЕХНИЧЕСКИМИ СИСТЕМАМИ... Gt...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Характерные особенности задач многокритериального выбора

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика задач подготовки и принятия решений в СОТС.
Важнейшая особенность современной научно-технической революции состоит в том, что по мере её развития всё большее значение приобретает учёт факторов сложности технико-эконом

Концептуальная модель принятия решений
  Анализ многочисленных публикаций по различным аспектам проблемы выбора показывает, что в настоящее время наметилась прогрессивная тенденция к интеграции различных научных направлени

Обобщенная структура современных интегрированных систем поддержки принятия решений
Рис.1.3.1. Функциональная схема интегрированной системы поддержки принятия решений по управлению структурн

Постановка задачи линейного программирования
Значительная часть задач принятия решения – это задачи распределения ресурсовмежду объектами. Пусть имеется т видов ресурсов, каждый i

Экономическая интерпретация задачи линейного программирования
Пример 2.1. Пусть требуется определить план выпуска четырёх видов продукции П1, П2, П3, П4, для изготовления которы

Анализ существования решений в задаче линейного программирования
Рассмотрим неравенство ах £ b. Если от неравенства мы хотим перейти к уравнению, то введём дополнительную переменную у и запишем

Графический метод решения задач линейного программирования
Вспомним построение линейных зависимостей. Начнём с уравнений. Линейное уравнение с двумя

Двойственные задачи линейного программирования
Каждой задаче ЛП можно некоторым образом сопоставить другую задачу ЛП, называемую двойственной по отношению к исходной (прямой): Прямая задача (ПЗ)

Анализ решений задач линейного программирования.
Рассмотрим следующую задачу ЛП: (1)

Обобщенный алгоритм решения задач НЛП
Эффективное решение различных задач нелинейного программирования может быть осуществлено на основе учета конкретных особенностей этих задач. При этом под эффективностью того или иного алгоритма, ка

Аналитические методы решения задач НЛП
В некоторых случаях задачи НЛП удается решить аналитически. Это, в частности, удается в том случае, если ЦФ и ОДА являются выпуклыми. Обобщенный алгоритм решения задачи НЛП включает в себя следующи

Численные методы решения задач НЛП
В качестве r(xk) используется направление, в котором наиболее сильно возрастает целевая функция. Это направление задается градиентом функции ÑF(xk). Суть метода состоит

Постоянный шаг.
Задается hk = h = const, при этом должно выполняться условие F(xk+1) = F(xk + hkÑF(xk)) > F(xk). Пусть

Наискорейший подъем.
Если подставить в выражение для F(x) значение x=xk+1 в соответствии с (1), то получим выражение F(xk+hkÑF(xk)), как функцию от величины шага. След

Функции Лагранжа
Исторически первым способом сведения задачи с ограничениями к задаче безусловной оптимизации явилось использование функции Лагранжа L(x,m) L(x, m) = f(x) + mт(b - j(x)) = f(x) +

Штрафные функции
Исходная задача условной оптимизации сводится к последовательности задач безусловной оптимизации функций Fk(x, m) = f(x) - Sk(x, mk), k = 1,2,3,....

Методы прямой условной оптимизации
Методы прямой условной оптимизации предназначены для непосредственного решения задачи выпуклого программирования в условиях ограничений, описывающих множество допустимых решений D. Итак, п

Метод условного градиента
Существо метода условного градиента состоит в том, что, если известна некоторая точка xkÎD, то направление возрастания целевой функции может задаваться некоторой внутренней или кра

Постановка задачи целочисленного программирования
  Первые упоминания о линейных уравнениях возникли ещё за несколько веков до нашей эры. В Древней Греции Диофант (II-III в.) формулирует уравнения, в которых искомые переменн

Основные этапы решения задачи целочисленного программирования (ЗЦП) методом ветвей и границ
  Шаг 1. Исходная ЗЦП решается как задача линейного программирования (ЗЛП) (снимаем ограничения вида (г)). При этом за «рекорд» в ЗЦП принимают значение целевой функц

Постановка задачи бивалентного (булева) программирования
  Перейдем теперь к частному случаю задач целочисленного программирования. В этом частном случае искомая переменная

Эвристический метод решения задачи булева программирования.
  Существует два метода решения задач с булевыми переменными. Во-первых, их можно решать как обычные задачи целочисленного программирования, т. е. методом ветвей и границ. Пр

Уточненное описание структуры выбора с многими отношениями предпочтения. Общая постановка задач векторной оптимизации
Обобщенная структура выбора с мультипредпочтением, описывающая задачи векторной оптимизации, имеет следующий вид:

Принцип В.Парето в задачах многокритериального выбора
  В п. 4.1 было установлено, что для корректного решения задач многокритериального выбора необходимо в исходную постановку задачи (4.1)‑(4.2) привнести дополнительную информацию

Основные свойства множества Парето
  Рассмотрим основные свойства множества Парето (множества и соответственно

Методы построения множества Парето
  Приведенные в п.4.2.2 свойства множества Парето могут быть использованы для построения (исследования) данного множества (либо его подмножеств) или определения его характеристик в ко

Методы покомпонентного построения результирующих отношений предпочтения
  Основное содержание данных методов сводится к формированию сужающейся последовательности множеств (ядер):

Методы построения результирующих отношений предпочтения на основе свертки показателей
  Сущность данных методов многокритериальной оптимизации состоит в построении такого результирующего отношения предпочтения

Характеристика задач принятия решений в условиях неопределенности среды
Процессы анализа сложных экономических систем и принятия решений в них связаны с выделением изучаемой системы из некоторой системы большего масштаба (метасистемы), т.е. разделения этой метасистемы

Принятие решений в условиях стохастической среды
Постановка задач принятия решений в условиях стохастической среды имеет вид (D(w), f(w)), wÎW, где D(w) - множество допустимых альтернатив, f(w) - целевая функция.

Методы детерминизации.
При решении конкретных задач выбора на вероятностных структурах часто вводится предположение о том, что задание целевой функции f(w) и ограничивающих отношений ri(w), i=1,...,m, определя

Методы имитационной оптимизации.
В методах имитационной оптимизации (прямых методах стохастического выбора) не производится преобразование задачи к ее детерминированному эквиваленту. Суть данных методов заключается в том, что гене

Принятие решений в условиях целенаправленной среды
Принятие решений в условиях целенаправленной среды связано с тем, что известна цель среды, в соответствии с которой она выбирает свои состояния и которую преследует в своих действиях. Эти действия

Постановка задач игрового выбора.
Рассмотрим формализованное представление задачи принятия решений в условиях целенаправленной среды. Обобщенную задачу принятия решения в условиях неопределенности можно записать в виде (D

Матричные игры. Чистые и смешанные стратегии.
Простейшим вариантом игры является антагонистическая игра, в которой противодействуют две оперирующих стороны (2 игрока), при этом множества различных альтернатив из которых они выбирают решения ко

Методы нахождения оптимальных смешанных стратегий.
Процедура нахождения оптимальных чистых или смешанных стратегий соответствует выявлению рациональной линии поведения противников в конфликтной ситуации, описываемой игровой моделью. Поэтому такую п

Принятие решений в условиях неизвестной среды
В случае неизвестной среды нет достаточных оснований для предположений о том, какие значения будут принимать параметры, характеризующие состояние среды на рассматриваемом временном интервале. При э

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги