рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Анализ существования решений в задаче линейного программирования

Анализ существования решений в задаче линейного программирования - раздел Информатика, РАЗДЕЛ 1.МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ (СОТС Рассмотрим Неравенство Ах £ B. Если От Н...

Рассмотрим неравенство ах £ b. Если от неравенства мы хотим перейти к уравнению, то введём дополнительную переменную у и запишем ах +у = b, т.е. получим одно уравнение с двумя неизвестными.

В общую постановку задачи оптимизации входят неравенства вида (i =1...т), где п – число неизвестных; т – число неравенств. Если в каждое неравенство добавить неотрицательное неизвестное yi ³ 0
(i = 1...m),
то от системы неравенств можно перейти к системе уравнений (i = 1...m).

В этой системе общее число неизвестных N = n+m, где п – число основных неизвестных xj; т – число дополнительных неизвестных yi, которое равно числу уравнений.

Возможны три варианта соотношения величин N и т.

1. Число неизвестных меньше, чем число уравнений: N < m.

Например, , т.е. N =1, т =2. Очевидно, эта система решения не имеет, т.е. нет таких значений х1, которые удовлетворяли бы обоим уравнениям. В этом случае говорят, что система условий несовместна. Значит, если число неизвестных N меньше числа уравнений т, то система решения не имеет и является несовместной.

2. Число неизвестных равно числу уравнений: N = m.

Например, . Нетрудно найти, что решением этой системы будут значения х1 =2, х2=1. Таким образом, линейная система, в которой число неизвестных N равно числу уравнений т, имеет одно решение.

Наличие (2) или отсутствие решений (1) при различных соотношениях числа переменных N и числа уравнений т справедливо только для линейно–независимых уравнений, которые не могут быть получены умножением, делением, сложением, вычитанием исходных уравнений.

Например, пусть есть уравнение 2х = 10, из которого можно получить несколько: х=5; 4х=20; 6х=30 и т.д. Все эти уравнения будут линейно зависимыми, и новых сведений о зависимостях для переменной не содержат. Поэтому в этом примере т=1 (а не 4).

Аналогично в системе

есть только два линейно независимых уравнения, так уравнение (в) есть результат суммирования (а) и (б), а уравнение (г) есть результат деления (в) на 5.

3. Число неизвестных больше числа уравнений: N > m. Например,
2х1 + х2 = 2. Очевидно, что все значения х1 и х2, лежащие на прямой (рис.1.3.1) этого уравнения, являются его решением. Значит это уравнение имеет бесчисленное множество решений. Итак, если в системе число неизвестных N больше числа уравнений т, то такая система имеет бесчисленное множество решений.

В случае, когда система имеет более одного возможного решения, может быть поставлена задача оптимизации. При этом суть такой задачи, как мы уже знаем, заключается в том, чтобы из всех допустимых решений, удовлетворяющих ограничениям и граничным условиям, выбрать такое, которое придаёт ЦФ оптимальное, т.е. максимальное или минимальное значение.

Если все ограничения и ЦФ линейны, задача оптимизации, как нам известно, является задачей ЛП.

– Конец работы –

Эта тема принадлежит разделу:

РАЗДЕЛ 1.МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО-ТЕХНИЧЕСКИМИ СИСТЕМАМИ (СОТС

РАЗДЕЛ МЕСТО И РОЛЬ ПРОЦЕССОВ ПОДГОТОВКИ И ПРИНЯТИЯ РЕШЕНИЙ В ОБЩЕЙ ТЕХНОЛОГИИ УПРАВЛЕНИЯ СЛОЖНЫМИ ОРГАНИЗАЦИОННО ТЕХНИЧЕСКИМИ СИСТЕМАМИ... Gt...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Анализ существования решений в задаче линейного программирования

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общая характеристика задач подготовки и принятия решений в СОТС.
Важнейшая особенность современной научно-технической революции состоит в том, что по мере её развития всё большее значение приобретает учёт факторов сложности технико-эконом

Концептуальная модель принятия решений
  Анализ многочисленных публикаций по различным аспектам проблемы выбора показывает, что в настоящее время наметилась прогрессивная тенденция к интеграции различных научных направлени

Обобщенная структура современных интегрированных систем поддержки принятия решений
Рис.1.3.1. Функциональная схема интегрированной системы поддержки принятия решений по управлению структурн

Постановка задачи линейного программирования
Значительная часть задач принятия решения – это задачи распределения ресурсовмежду объектами. Пусть имеется т видов ресурсов, каждый i

Экономическая интерпретация задачи линейного программирования
Пример 2.1. Пусть требуется определить план выпуска четырёх видов продукции П1, П2, П3, П4, для изготовления которы

Графический метод решения задач линейного программирования
Вспомним построение линейных зависимостей. Начнём с уравнений. Линейное уравнение с двумя

Двойственные задачи линейного программирования
Каждой задаче ЛП можно некоторым образом сопоставить другую задачу ЛП, называемую двойственной по отношению к исходной (прямой): Прямая задача (ПЗ)

Анализ решений задач линейного программирования.
Рассмотрим следующую задачу ЛП: (1)

Обобщенный алгоритм решения задач НЛП
Эффективное решение различных задач нелинейного программирования может быть осуществлено на основе учета конкретных особенностей этих задач. При этом под эффективностью того или иного алгоритма, ка

Аналитические методы решения задач НЛП
В некоторых случаях задачи НЛП удается решить аналитически. Это, в частности, удается в том случае, если ЦФ и ОДА являются выпуклыми. Обобщенный алгоритм решения задачи НЛП включает в себя следующи

Численные методы решения задач НЛП
В качестве r(xk) используется направление, в котором наиболее сильно возрастает целевая функция. Это направление задается градиентом функции ÑF(xk). Суть метода состоит

Постоянный шаг.
Задается hk = h = const, при этом должно выполняться условие F(xk+1) = F(xk + hkÑF(xk)) > F(xk). Пусть

Наискорейший подъем.
Если подставить в выражение для F(x) значение x=xk+1 в соответствии с (1), то получим выражение F(xk+hkÑF(xk)), как функцию от величины шага. След

Функции Лагранжа
Исторически первым способом сведения задачи с ограничениями к задаче безусловной оптимизации явилось использование функции Лагранжа L(x,m) L(x, m) = f(x) + mт(b - j(x)) = f(x) +

Штрафные функции
Исходная задача условной оптимизации сводится к последовательности задач безусловной оптимизации функций Fk(x, m) = f(x) - Sk(x, mk), k = 1,2,3,....

Методы прямой условной оптимизации
Методы прямой условной оптимизации предназначены для непосредственного решения задачи выпуклого программирования в условиях ограничений, описывающих множество допустимых решений D. Итак, п

Метод условного градиента
Существо метода условного градиента состоит в том, что, если известна некоторая точка xkÎD, то направление возрастания целевой функции может задаваться некоторой внутренней или кра

Постановка задачи целочисленного программирования
  Первые упоминания о линейных уравнениях возникли ещё за несколько веков до нашей эры. В Древней Греции Диофант (II-III в.) формулирует уравнения, в которых искомые переменн

Основные этапы решения задачи целочисленного программирования (ЗЦП) методом ветвей и границ
  Шаг 1. Исходная ЗЦП решается как задача линейного программирования (ЗЛП) (снимаем ограничения вида (г)). При этом за «рекорд» в ЗЦП принимают значение целевой функц

Постановка задачи бивалентного (булева) программирования
  Перейдем теперь к частному случаю задач целочисленного программирования. В этом частном случае искомая переменная

Эвристический метод решения задачи булева программирования.
  Существует два метода решения задач с булевыми переменными. Во-первых, их можно решать как обычные задачи целочисленного программирования, т. е. методом ветвей и границ. Пр

Характерные особенности задач многокритериального выбора
  Реальные задачи выбора, возникающие на практике, чрезвычайно разнообразны, но всех их объединяет общая схема поиска решения, суть которой состоит в формировании совокупности операци

Уточненное описание структуры выбора с многими отношениями предпочтения. Общая постановка задач векторной оптимизации
Обобщенная структура выбора с мультипредпочтением, описывающая задачи векторной оптимизации, имеет следующий вид:

Принцип В.Парето в задачах многокритериального выбора
  В п. 4.1 было установлено, что для корректного решения задач многокритериального выбора необходимо в исходную постановку задачи (4.1)‑(4.2) привнести дополнительную информацию

Основные свойства множества Парето
  Рассмотрим основные свойства множества Парето (множества и соответственно

Методы построения множества Парето
  Приведенные в п.4.2.2 свойства множества Парето могут быть использованы для построения (исследования) данного множества (либо его подмножеств) или определения его характеристик в ко

Методы покомпонентного построения результирующих отношений предпочтения
  Основное содержание данных методов сводится к формированию сужающейся последовательности множеств (ядер):

Методы построения результирующих отношений предпочтения на основе свертки показателей
  Сущность данных методов многокритериальной оптимизации состоит в построении такого результирующего отношения предпочтения

Характеристика задач принятия решений в условиях неопределенности среды
Процессы анализа сложных экономических систем и принятия решений в них связаны с выделением изучаемой системы из некоторой системы большего масштаба (метасистемы), т.е. разделения этой метасистемы

Принятие решений в условиях стохастической среды
Постановка задач принятия решений в условиях стохастической среды имеет вид (D(w), f(w)), wÎW, где D(w) - множество допустимых альтернатив, f(w) - целевая функция.

Методы детерминизации.
При решении конкретных задач выбора на вероятностных структурах часто вводится предположение о том, что задание целевой функции f(w) и ограничивающих отношений ri(w), i=1,...,m, определя

Методы имитационной оптимизации.
В методах имитационной оптимизации (прямых методах стохастического выбора) не производится преобразование задачи к ее детерминированному эквиваленту. Суть данных методов заключается в том, что гене

Принятие решений в условиях целенаправленной среды
Принятие решений в условиях целенаправленной среды связано с тем, что известна цель среды, в соответствии с которой она выбирает свои состояния и которую преследует в своих действиях. Эти действия

Постановка задач игрового выбора.
Рассмотрим формализованное представление задачи принятия решений в условиях целенаправленной среды. Обобщенную задачу принятия решения в условиях неопределенности можно записать в виде (D

Матричные игры. Чистые и смешанные стратегии.
Простейшим вариантом игры является антагонистическая игра, в которой противодействуют две оперирующих стороны (2 игрока), при этом множества различных альтернатив из которых они выбирают решения ко

Методы нахождения оптимальных смешанных стратегий.
Процедура нахождения оптимальных чистых или смешанных стратегий соответствует выявлению рациональной линии поведения противников в конфликтной ситуации, описываемой игровой моделью. Поэтому такую п

Принятие решений в условиях неизвестной среды
В случае неизвестной среды нет достаточных оснований для предположений о том, какие значения будут принимать параметры, характеризующие состояние среды на рассматриваемом временном интервале. При э

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги