рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция 13

Лекция 13 - Лекция, раздел Информатика, Лекция 13   Структура Программы И Модификаторы Типа Указателей В Ос Ms...

 

Структура программы и модификаторы типа указателей в ОС MS-DOS

 

В общем виде программа на языке C состоит из директив препроцессора, объявлений и определений объектов, команд, которые могут быть записаны как в одном, так и в нескольких модулях. В последнем случае при сборке программы создаётся файл проекта, в котором указываются имена всех входящих в проект файлов. Обязательно наличие одной и только одной функции main() в одном из файлов с исходными текстами. Функция main() задаёт точку входа в программу – с этой функции начинается и ей же заканчивается выполнение программы (в общем случае программа может быть завершена использованием системных функций завершения независимо от окончания функции main()).

Загрузочный модуль (типа .exe) ОС MS-DOS имеет структуру, показанную на рисунке 1.

 

Рис.1

 

Секция кода – содержит код программы (функции программиста и библиотечные функции).

Секция данных – содержит инициализируемые данные (глобальные и статические переменные) и неинициализируемые данные (константы).

Стек – используется для хранения автоматических объектов, передачи параметров и сохранения адреса возврата при вызове функции.

Ближняя куча (near heap) –динамически выделенная память.

Свободная память – память, не используемая программой.

После загрузки программы на исполнение положение и границы секций кода и данных фиксированы, начало кучи и стека (начало стека располагается снизу, а не сверху) также фиксированы, а их границы изменяются в процессе выполнения в зависимости от действий программы (направление увеличения их размеров показано стрелкой).

Регистр процессора – это ячейка памяти внутри процессора. Процессоры x86 для адресации в реальном режиме работы используют 4 сегментных регистра: CS (регистр кода, по нему происходит адресация кода программы), DS (регистр данных, по нему происходит адресация данных), SS (регистр стека, по нему производится адресация стека) и ES (дополнительный регистр, как правило дублирует регистр данных). Регистр указывает на определённый адрес в памяти, из которого можно обращаться к 64K (размер одного сегмента) ячейкам памяти по смещению относительно сегментного регистра (чтобы адресоваться к ячейкам памяти, лежащим за пределами доступных 64K, необходимо изменять значение сегментного регистра, что при программировании на языке C явно делать крайне нежелательно). Указатель называется ближним (near), если он содержит только значение смещения (сегментный адрес берётся из соответствующего сегментного регистра), данный указатель может адресоваться к 64K ячейкам памяти. Указатель называется дальним (far), если он содержит и сегментный адрес, и смещение относительно сегментного адреса, данный указатель может адресоваться к 1M ячейкам памяти. Указатель может быть указателем типа huge. Отличие указателей типа far от указателей типа huge состоит в том, что при выполнении арифметических операций с указателем типа far изменяется только смещение, сегментная часть остается постоянной, и указатель типа far может адресоваться только к 64K ячейкам памяти, чтобы его сместить, необходимо в программе явно изменять сегментную часть (проводить нормализацию), а при выполнении арифметических операций с указателями типа huge изменяться также будет и сегментная часть, поэтому можно адресоваться к любой ячейке в пределах 1M, такой указатель хранится в памяти в нормализованном виде.

Длину указателя определяет специальный модификатор (near, far или huge), используемый при объявлении указателя.

Следует учитывать, что одна ячейка памяти – это один байт. Если указатель указывает на объект, размер которого отличен от 1 байта, то в пределах одного сегмента указатель может обращаться не к 64K элементам, а к 64K/(размер типа) элементам. Например, указатель типа float в пределах сегмента будет обращаться к 64K/4=16K элементам, которые будут занимать 64K ячеек памяти.

 

Пример 1

float near *f;

int far *i;

char huge *c;

 

Модели памяти.

Особенности операционной системы MS-DOS требуют дополнительных уточнений относительно распределения памяти ЭВМ. Для этого определяются 6 моделей памяти.

 

Модель TINY.

 

Общий объём памяти для кода, данных и стека – 64K. Все указатели – ближние.

 

Модель SMALL.

 

Общий объём памяти для кода – 64K, для данных и стека – 64K. Все указатели по умолчанию – ближние, но для данных могут использоваться и дальние указатели. Начиная с этой модели в программе появляется возможность использования дальней кучи (far heap) для динамического использования памяти. К дальней куче могут обращаться только дальние указатели.

 

Модель MEDIUM.

 

Рекомендуется для больших программ с малым количеством статических данных. Общий объём памяти для кода каждого модуля – 64K, для данных и стека – 64K. Указатели данных по умолчанию – ближние, указатели функций по умолчанию – дальние.

 

Модель COMPACT.

 

Рекомендуется в случае с малым объёмом кода, но большим объёмом данных. Общий объём памяти для кода – 64K, для данных – 64K, для стека – 64K. Указатели данных по умолчанию – дальние, указатели функций по умолчанию – ближние. Начиная с этой модели отсутствует ближняя куча.

 

Модель LARGE.

 

Общий объём памяти для кода каждого модуля – 64K, для данных – 64K, для стека – 64K. Все указатели – дальние.

 

Модель HUGE.

 

Общий объём памяти для кода каждого модуля – 64K, для данных каждого модуля – 64K, для стека – 64K. Все указатели – дальние.

 

Данные модели памяти используются в среде Borland C++ 3.1 для ОС MS-DOS. Установка модели осуществляется в диалоговом окне Code Generation, вызываемом командой меню Options>Compiler>Code Generation.

 

Динамическое распределение памяти

 

Динамическое распределение памяти используется для выделения памяти для хранения данных в процессе работы программы, когда общий объём данных и сами данные на этапе написания программы не известны, а становятся известны лишь на этапе выполнения программы. Динамическое распределение памяти позволяет получить необходимый объём памяти для ближней или дальней кучи, в зависимости от типа указателя и модели памяти. Для этого существуют специальные библиотечные функции, описанные в файле alloc.h.

Процесс работы с динамической памятью:

- получение динамической памяти заданного объёма;

- работа с данными, распределяемыми в динамической памяти (если необходимо, то возможно перераспределение выделенного объёма памяти с сохранением находящихся в нём данных);

- освобождение динамической памяти по окончании работы с данными.

Для получения блока динамической памяти используются функции malloc() и calloc(). Прототипы функций:

void* malloc(size_t size);

void* calloc(size_t nitems, size_t size);

Функция malloc() в качестве аргумента принимает размер запрашиваемого блока в байтах. Функция calloc() в качестве первого аргумента принимает число элементов, под которые необходимо выделить память, в качестве второго аргумента – размер одного элемента в байтах. Тип size_t аналогичен типу unsigned int. Функции в случае успешного выделения возвращают указатель на тип void, содержащий адрес выделенного блока, который нужно явно преобразовать к указателю на необходимый тип данных. В случае ошибки (как правило связанной с тем, что такого объёма свободной памяти нет) функции возвращают значение NULL. NULL – это стандартная константа языка C, которая обозначает нулевой указатель. После выполнения динамического распределения памяти необходимо обязательно проверять, какое значение возвратили функции. Если значения указателя – NULL, то работа с памятью невозможна (в большинстве случаев следует завершить программу).

Для перераспределения уже выделенного объёма памяти используется функция realloc(). Прототип функции:

void* realloc(void* block, size_t size);

Функция изменяет размер ранее выделенного блока, сохраняя его содержимое. В качестве первого аргумента функция принимает адрес ранее выделенного блока, в качестве второго аргумента – новый размер блока, при этом новый блок может оказаться в другом месте кучи. Функция в случае успешного выделения возвращает указатель на тип void, содержащий адрес нового блока, который нужно явно преобразовать к указателю на необходимый тип данных. Функция возвращает NULL, если размер нового блока больше размера старого блока, и в памяти нет свободного места для размещения нового блока.

Для освобождения блока динамической памяти используется функция free(). Прототип функции:

void free(void* block);

Функция выполняет освобождение блока памяти, адрес которого принимает в качестве аргумента. Все блоки динамической памяти должны быть освобождены по окончании работы с ними, иначе они так и останутся занятыми по окончании работы программы до перезагрузки системы, что приведёт к утечке оперативной памяти.

В среде Borland C++ 3.1 для работы с дальней кучей необходимо использовать дальние указатели и соответствующие функции, но с приставкой far.

 

Пример 2

#include <stdio.h>

#include <alloc.h>

#include <stdlib.h>

 

void main(void)

{

int n,m;

printf("Input string numbern");

scanf("%d",&n);

printf("Input column numbern");

scanf("%d",&m);

float *f,sum=0;

if((f=(float*)malloc(n*m*sizeof(float)))==NULL)

{

printf("System do not have free memoryn");

exit(1);

}

printf("Input matrix");

for(int i=0;i<n;i++)

for(int j=0;j<m;j++)

{

printf("nmatrix[%d][%d]=",i,j);

scanf("%f",(f+i*m+j));

}

if((f=(float*)realloc(f,(n+1)*m*sizeof(float)))==NULL)

{

printf("System do not have free memoryn");

exit(1);

}

for(int t=0;t<m;t++,sum=0)

{

for(int j=0;j<n;j++)

sum+=*(f+j*m+t);

*(f+n*m+t)=sum;

}

for(int k=0;k<n+1;k++)

{

printf("n");

for(int j=0;j<m;j++)

printf("%ft",*(f+k*m+j));

}

free(f);

}

 

– Конец работы –

Эта тема принадлежит разделу:

Лекция 13

На сайте allrefs.net читайте: Лекция 13.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция 13

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Эта работа не имеет других тем.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги