рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Технические средства, используемые ЛВС

Технические средства, используемые ЛВС - раздел Информатика, Основы современной информатики   Локальные Вычислительные Сети (Лвс) Начали Использоваться С С...

 

Локальные вычислительные сети (ЛВС) начали использоваться с середины 70-х годов в результате падения цен на электронные компоненты, расширения возможностей терминальных устройств, появления интеллектуальных терминалов, а затем и персональных компьютеров. В результате количество различного оборудования, установленного в учреждениях, школах, университетах, заводах и т.п., возросло. Обладатели дешевых компьютеров начали поиски технически дешевых методов их соединения между собой. Это связано с применениями, требующими оперативного использования центрального банка данных (в сбербанках, бухгалтериях, учебных классах и т.п.), коллективным использованием дорогостоящей периферии, такой, как накопители большей емкости, высококачественная печать (лазерные принтеры) и многого другого.

Средства связи, применяемые в глобальных вычислительных сетях, нецелесообразно использовать в данном случае из-за высокой стоимости абонируемых каналов и низкой скорости передачи. В рамках стандартов эта скорость находится в пределах 110 – 9600 бод.

В то время, как глобальные сети могут быть общедоступными или частными, локальные сети, как правило, принадлежат той же организации, которая соединяет ими свое оборудование. Цель разработчиков ЛВС заключается в нахождении простого и дешевого решения для объединения в вычислительную сеть нескольких десятков компьютеров, находящихся в одном здании. Для упрощения, а соответственно удешевления аппаратных и программных средств разработчики первых локальных сетей остановились на совместном использовании для всех компьютеров единой разделяемой среды (Shared media), используемой компьютерами в режиме разделения времени (TDM – Time Division Multiplexing).

При использовании в локальных сетях очень простых конфигураций (общая шина, кольцо) наряду с положительными имели место и отрицательные последствия, из которых наиболее неприятными были ограничения по производительности и надежности. Наличие только одного пути передачи информации, разделяемого всеми узлами сети, ограничивало пропускную способность сети пропускной способностью этого пути (которая делится, в среднем, на число компьютеров в сети), а надежность сети – надежностью этого пути. Поэтому по мере роста популярности локальных сетей и расширения сферы их применения наметилось движение к отказу от разделяемых сред передачи данных в локальных сетях и переходу к применению активных коммутаторов, в которых конечные узлы присоединяются к индивидуальным линиям связи. В чистом виде такой подход предлагается в технологии АТМ, а в технологиях, носящих традиционные названия с приставкой Switched (коммутируемые), Switched Ethernet, Switched Token Ring обычно используется смешанный подход, сочетающий разделяемые и индивидуальные среды передачи данных. Чаще всего конечные узлы соединяются в небольшие разделяемые сегменты с помощью повторителей, а сегменты – друг с другом с помощью индивидуальных коммутируемых связей.

Таким образом, внутри базовых структур по-прежнему работают все те же протоколы разделяемых единственных сред передачи данных, которые были разработаны на начальном этапе появления ЛВС.

Изначально ЛВС имели следующие характерные особенности, отличающие их от ГВС:

работает только на ограниченной территории (как правило, это территория одного здания или рабочего участка, а ее протяженность от нескольких сотен метров до километра);

скорость передачи данных первоначально составляла
1 – 20 Мбит/с, в современных ЛВС она равна 100 – 200 Мбит/с, а в некоторых ЛВС доходит до 104 - 105 Мбит/с;

основной передающей средой на начальном этапе являлись витая пара и коаксиальный кабель, а в последнее время все большее распространение получает оптический кабель;

к основным топологиям, используемым в ЛВС (топология в контексте компьютерной сети означает способ соединения друг с другом оконечных систем или станций), относятся шина, кольцо и звезда, а также суперпозиция этих схем в виде дерева и т.п. (рис. 3.16);

 

а

   
б в

 

 

г

 

Рис. 3.16. Варианты топологии локальных вычислительных сетей

 

использование метода коммутации пакетов при полном отказе (в отличие от ГВС) от коммутации каналов;

оперативность выполнения запросов – время прохождения запросов в ЛВС гораздо меньше ГВС.

При всем различии ЛВС и ГВС по мере развития этих сильно отличающихся на начальном этапе сетевых технологий происходит явное их сближение, которое уже привело к значительному их взаимопроникновению.

Одним из проявлений этого сближения является появление сетей масштаба большого города (MAN), занимающих промежуточное положение между локальными и глобальными сетями и имеющих ряд характерных особенностей как тех, так и других.

Появление новых технологий, использование оптической (цифровой) немодулированной передачи данных по оптоволоконным линиям в ГВС значительно повысило их надежность, упростило техническую реализацию, избавило от сложных и избыточных процедур обеспечения корректности передачи и позволило обеспечить скорости передачи данных сравнимые и даже превышающие скорости современных ЛВС.

В то же самое время (как уже отмечалось) локальные сети перенимают у глобальных транспортные технологии. Все новые скоростные ЛВС поддерживают работу по индивидуальным линиям связи наряду с традиционными для ЛВС разделяемыми линиями.

В локальных сетях также большое внимание уделяется методам защиты информации от несанкционированного доступа. Такое внимание обусловлено тем, что ЛВС перестали быть изолированными, чаще всего они имеют выход в «большой мир» через глобальные связи.

И, наконец, появляются технологии, изначально предназначенные для обоих видов сетей. Наиболее ярким представителем нового поколения технологий является технология АТМ.

Процесс переноса служб и технологий из глобальных сетей в локальные приобрел такой массовый характер, что появился даже специальный термин intranet-технологии (intra – внутренний), обозначающий применение служб внешних (глобальных) сетей во внутренних (локальных).

Методы доступа в ЛВС.Методы доступа в ЛВС, входящие в состав протоколов канального уровня, определены рядом стандартов IEEE*. Наибольшее распространение получили ЛВС, использующие технологию Ethernet (802.3), реализованную в 1975 г. фирмой Xerox. Этот метод доступа опробован еще раньше в радиосети Алоха, о которой уже упоминалось ранее.

В зависимости от типа физической среды (и топологии) стандарт IEEE 802.3 имеет различные модификации: 10 Base-5 – «толстый коаксиал»; 10 BASE-2 – «тонкий коаксиал» с шинной топологией; 10 Base-T – неэкранированная витая пара; 10 Base-F – оптоволокно; 100 Base-T, F – витая пара, оптоволокно с топологией звезда.

При передаче двоичной информации по кабелю различных типов Ethernet обеспечивает пропускную способность 10 Мбит/с в полудуплексном режиме (за исключением 100 Base-T, F).

Принятый в 1995 г. стандарт Fast Ethernet обеспечивает скорость 100 Мбит/с, а принятый в 1998 г. стандарт Gigabit Ethernet предполагает скорости 1000 Мбит/с. Оба работают в дуплексном режиме.

В 2002 году принят стандарт, поддерживающий скорость передачи 10 Гбит/с (104 Мбит), а в 2009 году предполагается принятие стандарта 40 – 100 Гбит/с (ряд фирм уже в 2008 году начали выпуск оборудования для подобных сетей Ethernet).

Все виды стандартов Ethernet используют один и тот же метод доступа (разделение среды) CSMA/CD (Carrier Sense Multiply Access with Collision Detection) – случайный множественный доступ с контролем несущей и разрешением коллизий. Принцип доступа аналогичен сети Алоха: используется один канал (моноканал) для всех станций, хотя в Ethernet в качестве канала служит кабель, который может использоваться всеми в любой момент, когда это потребуется (случайным образом). Так, на рис. 3.17 три станции независимо, случайным образом обращаются к каналу. Но в отличие от простой сети Алоха станция, прежде чем занять канал для передачи своей информации, прослушивает его на предмет занятости. Таким образом, станция 2 занимает канал только после того, как станция 1 его освобождает. Однако при одновременном (или почти одновременном) обращении к каналу двух станций, когда сигнал не успевает распространиться по линии и станции не регистрируют занятости канала, возможно столкновение и искажение пакетов. В этом случае вступает в действие механизм разрешения столкновений (коллизий). Он обнаруживает столкновение и обрывает передачу. Это и представлено на рис. 3.17, где произошла коллизия между станциями 2 и 3. Обе станции ждут в течение короткого случайного интервала времени, а затем повторяют передачу. Этот метод доступа обеспечивает случайное временное уплотнение каналов и имеет очень высокую эффективность их использования.

 

 

Рис. 3.17. Метод доступа CSMA/CD

 

В зависимости от типа спецификации количество рабочих станций в сети лежит в диапазоне от 30 – 10 Base-2 (тонкий Ethernet) до 1024 – 10 Base-Т (неэкранированная витая пара), максимальное

расстояние между узлами сети 925 м (10 Base-5, 10 Base-F – толстый коаксиальный кабель или оптический кабель).

Широкое распространение получили также сети с маркерным методом доступа (Token Ring, ArcNet и FDDI). Принципиально они очень близки, так же как и в Ethernet они имеют общую, разделяемую среду передачи данных, замкнутую, как правило, в кольцо (за исключением Arc Net) и представляющую общий ресурс. Метод доступа к среде не является случайным (как Ethernet) и основан на передаче станциям права на использование среды передачи в определенном порядке. Это право передается с помощью кадра (импульса) специального формата, называемого маркером или токеном (token). Среди сетей с подобным методом доступа наиболее распространена разработанная в 1984 г. фирмой IBM технология Token Ring, на ее основе в 1985 г. был принят стандарт 802.5. Принцип работы Token Ring представлен на рис. 3.18.

 

 

Рис. 3.18. Принцип работы ЛВС Token Ring

 

Маркерное кольцо – распространенный вариант локальной сети. Доступом к сети управляет циркулирующая по кольцу последовательность бит, называемая маркером. Чтобы послать сообщение, станция должна сначала дождаться прихода маркера, удалить маркер из кольца, направить в кольцо пакет с адресом (или последовательность пакетов) и в конце снова направить в кольцо маркер. Станции могут удалять адресованные им пакеты, сохраняя в кольце маркер. Показано, как станция А посылает сообщение станции С, которая получает его, а затем посылает сообщение станциям А и D.

В этих сетях скорость передачи достигает 16 Мбит/с, максимальное количество станций – 96, максимальная длина – 120 м.

С середины 90-х годов начался интенсивный переход от ЛВС начального уровня со скоростями 10 – 20 Мбит/с к ЛВС со скоростями 100 Мбит/с и выше. Структура стандартов IEEE 802.x представлена на рис. 3.19.

Рис. 3.19. Структура стандартов IEEE 802.x

 

Первая высокоскоростная сеть на оптическом кабеле FDDI (Fiber Distributed Data Interface) была разработана в 1988 г. Это кольцевая сеть (двойное кольцо) протяженностью 100 км с маркерным методом доступа со скоростью до 100 Мбит/с. По своим размерам такие сети выходят за рамки общепринятых ЛВС, приближаясь к ГВС. На начальном этапе эта сеть не имела широкого распространения ввиду высокой стоимости сетевого оборудования, однако с появлением варианта этой сети на витой паре (CDDI), а также отработкой технологии оптических интерфейсов она активно внедряется.

Начиная с середины 90-х годов начался массовый переход традиционных ЛВС на скорости 100 Мбит/с. Это уже упоминавшийся стандарт Fast Ethernet, который по многим параметрам протоколов и технических средств совместим с начальным Ethernet, что облегчает переход к новой сети при сохранении ряда старых компонентов. Конкуренцию этой сети составляет технология 100 VG-AnyLAN, которая обеспечивает скорость 100 Мбит/с и поддерживает оба, самых распространенных на сегодняшний день протокола – Ethernet и Token Ring.

Тем не менее, большая часть локальных сетей поддерживает протокол Ethernet, который к 2008 году, как уже упоминалось

 

 

 

Рис. 3.20. Варианты для физических носителей для Gigabit Ethernet.

 

ранее, достиг скорости передачи 40 – 100 Гбит/с. Зависимость максимальной длины Gigabit Ethernet от типа передающей среды представлена на рис. 3.20.

Обсуждая производительность ЛВС необходимо хотя бы кратко упомянуть о технологии Fibre Channel (FC), которая изначально использовалась, в основном для подключения высокоскоростной периферии к болим компьютерам и передает данные по волоконнооптическому и медному кабелю с максимальными (по сравнению с обычными ЛВС) скоростями. Так в 90-х годах, когда максимальная скорость Ethernet (Fast Ethernet) была 100 Мбит/с, скорость канала FC доходила до 3 Гбит/с.

Одним из главных преимуществ FC является то, что он предоставляет ряд вариантов среды и скорости передачи, а так же топологии сети. В табл. 3.2 приведены доступные комбинации физического носителя и скорости передачи данных для сетей FC (данные на 2000 год).

 

Таблица 3.2

 

Максимальная длина физических носителей в сети Fibre Channel.

 

 

Структура технических средств ЛВС.1. Передающая среда, используемая в ЛВС, представлена тремя типами: витая пара, коаксиальный кабель и оптический кабель.

Витая пара – наиболее распространенный и дешевый вариант канала, традиционно используемый в телефонии. Этот вид каналов в наименьшей степени защищен от помех и возможностей несанкционированного доступа. Существует пять категорий кабеля на основе витой пары, различающихся по электротехническим и высокочастотным характеристикам. Так, витая пара пятой категории используется в высокоскоростных ЛВС. Данные кабели могут быть экранированными и неэкранированными. Стоимость высококачественного кабеля на основе витой пары достаточно высока.

Коаксиальный кабель используется, как правило, в сетях Ethernet, имеет лучшие высокочастотные характеристики и помехозащищенность по сравнению с витой парой, однако переход на быстрые протоколы Ethernet связан с переходом его на витую пару или оптический кабель.

Оптический кабель сравнительно новая и наиболее перспективная передающая среда, значительно превосходящая по своим коммуникационным свойствам, рассмотренным выше, другие передающие среды. В то же самое время она имеет достаточно сложную структуру и требует более детального описания.

Волоконно-оптические коммуникации были практически созданы в середине 60-х годов прошлого столетия на базе двух ключевых компонентов: создания твердотельных источников излучения света и получения чистого стекла. Эти работы были основаны на более ранних экспериментах, открывших принцип световода. В основе его – свойство неограниченного распространения света в воде и других средах.

Развитие этой технологии идет по пути создания более мощных источников излучения и уменьшения примесей в стекле (современное оптическое волокно в десять тысяч раз прозрачнее оконного стекла).

Другим фактором, повлиявшим на эволюцию волоконно-оптической линии связи (ВОЛС), стала разработка производительных приемников, принимающих световой сигнал в большом динамическом диапазоне.

ВОЛС осуществляется посредством трех главных компонентов: оптического кабеля, оптического трансивера (передатчика) и приемника оптического излучения. Сначала электрические сигналы поступают на вход трансивера, который преобразует их в световые импульсы и направляет в волокно. Импульсы света принимаются на другом конце приемником и вновь преобразуются в электрический сигнал. Чем чаще передаются импульсы, тем больше пропускная способность канала.

Оптическое волокно состоит из сердцевины и оболочки с разными показателями преломления n1 и n2. Сердцевина имеет больший показатель преломления. Таким образом, световой сигнал благодаря внутреннему преломлению или отражению не покидает оптически более плотной среды (рис. 3.21). По диаметру сердцевины волокно подразделяется на одно- и многомодовое.

 

 

Рис. 3.21. Распространение света в волокне

 

В одномодовом волокне диаметр световодной жилы порядка 8 – 10 мкм, т.е. сравним с длиной световой волны. При такой геометрии в волокне может распространяться только один луч (одна мода). В многомодовом волокне размер световодной жилы порядка 50 – 60 мкм, что делает возможным распространение большого количества лучей (много мод). Многомодовое волокно, в свою очередь, подразделяется на градиентное, имеющее градиентный профиль показателя преломления световой области с максимумом на оси и ступенчатое, имеющее постоянный показатель преломления сердцевины (табл. 3.3).

Имеются две основные характеристики оптоволокна, определяющие максимальное расстояние между станциями это:

затухание определяется потерями на поглощение и на рассеяние излучения в оптическом волокне. Затухание связано с длиной волны излучения, вводимого в волокно. Потери на поглощение зависят от чистоты материала, потери на рассеяние определяются неоднородностями показателя преломления материала;

дисперсия характеризует зависимость скорости распространения сигнала от длины волны вводимого излучения. Поскольку источники света (светодиоды или лазеры) излучают некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и, тем самым, порождает искажение сигналов.

 

Таблица 3.3

 

Основные характеристики волокна

 

Характеристика Многомодовое Одномодовое
Профиль показателя преломления Ступенчатый Градиентный Ступенчатый
Длина волны излучения, мкм 0,85 1,3 0,85 1,3 1,3 1,55
Диаметр сердцевины, мкм 50 – 1000 50 – 60 4 – 10
Диаметр оболочки, мкм 125 – 1050 124 – 140 75 – 125
Композиционный состав серцевина/оболочка Стекло/Стекло, стекло/пластик, пластик/пластик Стекло/Стекло Стекло/Стекло
Полоса пропускания, МГц × км 2000 и выше

 

 

Одномодовое волокно обладает самыми лучшими характеристиками по полосе пропускания и затуханию. Однако чтобы реализовать преимущества одномодового волокна, необходимо использовать дорогостоящие источники излучения и другое вспомогательное оборудование. Само одномодовое волокно также существенно дороже многомодового[††].

Многомодовое волокно более удобно при монтаже, на него рассчитаны доступные и дешевые излучатели, но оно обладает гораздо большим затуханием и меньшей полосой пропускания. В связи с этим многомодовое волокно вполне приемлемо для локальных сетей связи, но недостаточно для магистральных линий.

Оптические передатчики подразделяются на светоизлучающие диоды и лазеры. Первые сравнительно дешевые, имеют большой срок службы и применяются в многомодовых линиях связи ввиду невысокой мощности излучения света и слабой фокусировки. Вторые лишены последних недостатков и используются в одномодовых линиях связи, однако их стоимость существенно выше.

В состав приемного устройства ВОЛС входят фотоприемник и электрическая цепь.

Среди основных преимуществ ВОЛС необходимо отметить следующие:

широкая полоса пропускания, которая для многомодового волокна более чем на порядок превышает полосу пропускания витой пары, а для одномодового это превышение более чем на два порядка;

большие расстояния между станциями, так для одномодового волокна расстояние между станциями составляет 50 – 60 км;

высокая помехозащищенность – его нечувствительность к электрическим помехам, возможность прокладки линий вблизи мощных и высоковольтных электрофизических устройств;

гальваническая развязка элементов сети, т.е. волокно обладает изолирующим свойством, отсутствует потребность в заземлении;

взрыво- и пожаробезопасность – отсутствие искрообразования, позволяет использовать его на химических и нефтеперерабатывающих предприятиях при обслуживании технологических процессов повышенного риска.

Истинные возможности оптического волокна проявляются в том случае, если по одному волокну передается множество лучей с разными частотами. Это является одной из разновидностей частотного мультиплексирования (Frequency-Division Multiplexing, FDM), обычно, однако, используется термин спектральное уплотнение, или мультиплексирование по длинам волн (Wavelength-Division Multiplexing, WDM). В таком случае свет, распространяющийся по оптоволокну, состоит из лучей различных цветов, или длин волн, каждый луч передает данные отдельного канала. В 1997 году специалисты Bell Laboratories продемонстрировали систему со спектральным уплотнением, работающую с сотней лучей, каждый из которых поддерживал скорость передачи данных 10 Гбит/с. Общая пропускная способность этой линии составляет 1 триллион битов в секунду (1 Тбит/с). В настоящее время доступны коммерческие системы с 80 каналами с пропускной способностью 10 Гбит/с.

2. Компьютеры, включенные в сеть, различаются по своему функциональному назначению:

рабочие станции – индивидуальные компьютеры пользователей;

серверы – компьютеры коллективного использования различного функционального назначения.

Ресурсы серверов доступны рабочим станциям и разделяются между ними. Наиболее распространенными ресурсами являются дисковые файлы, базы данных, прикладные программы, устройства печати и т.п.

3. Сетевые контроллеры (адаптеры) выполняют функции аппаратуры канала данных (АКД): обеспечение интерфейсных функций, буферизацию, формирование пакетов, параллельно-последова­тельные преобразования, кодирование/декодирование, доступ к кабелю и т.п.

4. В средства объединения сетей входят:

повторители (Repeater) – используются для физического соединения различных сегментов кабеля локальной сети с целью увеличения общей длины сети;

концентраторы (Hub) – применяются для объединения отдельных сегментов сетей в единую разделяемую среду;

коммутаторы (Switch) – могут применяться вместо концентратора для повышения производительности сетей (например, в Ethernet), переключая сообщение на нужный сегмент;

мосты (Bridge) – предназначаются для объединения или разъединения (c целью уменьшения трафика) сетей, имеющих одинаковые протоколы верхнего уровня (аппа­ратно независимые), а также для объединения сетей с различной передающей средой;

маршрутизаторы (Router) – служат для определения оптимального маршрута сообщений между различными узлами сети и сетевыми сегментами;

шлюзы (Gateways) – обеспечивают работу сетей с различными протоколами верхнего уровня.

Возможны устройства, совмещающие несколько функций, например гибридные маршрутизаторы (brouter) – гибрид моста и обычного маршрутизатора.

Тип ЛВС определяется, главным образом, методами доступа (или протоколами нижнего уровня). На среднем уровне выбор протокола зависит в основном от применяемой операционной системы. Так, в сетях, работающих с ОС UNIX, используется рассмотренный ранее TCP/IP. В популярной, сравнительно недавно, сетевой ОС Novell Net Ware применяются протоколы IPX/SPX, a в NETBIOS, как правило, – сетевые операционные системы фирмы Microsoft.

IPX (Internetwork Packet Exchange) – протокол межсетевой передачи пакетов, соответствует транспортному уровню OSI.

SPX (Sequenced Packet Exchange) – протокол последовательного обмена пакетами, со­ответствует сетевому и сеансовому уровню OSI.

NETBIOS (Network Basic Input/Output System) – протокол сетевой базовой системы ввода-вывода, разработанный фирмой IBM, выполняет функции сетевого, транспортного и сеансового уровня OSI.

В заключение следует отметить, что «жизнь» вычислительных сетей очень динамична, а их классификация неоднозначна. Изначальные представления, что глобальные сети медленные и используют традиционные телекоммуникации (средства связи, а локальные значительно быстрее, используя выделенные линии и единую среду передачи данных изменились. Об этом свидетельствует появление высокоскоростных глобальных сетей с включением выделенных каналов, а с другой стороны значительное усложнение локальных сетей с использованием характерных протоколов глобальных сетей и разработка новых технологий изначально предназначенных для обоих видов сетей. К таким технологиям относится прежде всего АТМ, которая может служить основой не только локальных и глобальных компьютерных сетей, но и телефонных сетей, а так же широковещательных видеосетей, объединяя все виды трафика в одной транспортной сети.

Кроме того, появились так называемые региональные сети, занимающие нишу между глобальными и локальными. В основном, рынок региональных сетей состоит из клиентов, которым необходима высокоскоростная передача данных на средние расстояния. Региональная сеть должна предоставлять требуемую пропускную способность с меньшими издержками и большей эффективностью, чем местная телефонная компания, используя метод коллективного использования высокоскоростного физического носителя, применяемого в локальных сетях.

И, наконец, очень специфическую, но типичную локальную сеть представляют суперкомпьютеры, о которых говорилось ранее и использующих быстрые коммуникационные каналы, традиционные для ЛВС.

Ориентировочные характеристики рассмотренных выше (традиционных) вычислительных сетей представлены на рис. 3.22.

Рис. 3.22. Сравнение мультиплексорных систем, а также локальных,

Региональных и глобальных сетей.

 

Особое место среди вычислительных сетей занимают так называемые беспроводные сети, которые будут рассмотрены в дальнейшем.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Основы современной информатики

Московский инженерно физический институт... государственный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Технические средства, используемые ЛВС

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕДИЦИНСКИЕ ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ
    Часть 1. Основы современной информатики     Москва 2008 УДК 004(075) ББК 32.97я7 А19 &n

ОСНОВНЫЕ СОКРАЩЕНИЯ
  АКД – аппаратура канала данных АЛУ – арифметико-логическое устройство АСНИ – автоматизированные системы научных исследований АСУ – автоматизированная сист

Структура современных систем обработки данных
  За сравнительно небольшой период развития электронных вычислительных систем появилось довольно много технических средств обработки данных (СОД). На рис. 1.1 представлена пр

И краткая характеристика его составных частей
  Более чем за 50 лет развития современной вычислительной техники прогресс в аппаратной реализации компьютеров и их технических характеристиках превзошел все мыслимые прогнозы, и пока

И их разновидности
  Большое значение имеет концепция взаимосвязи отдельных частей компьютера, структура или (как это принято называть в информатике) архитектура вычислительной системы. Архитектура комп

Суперкомпьютеров, мейнфреймов и мини-компьютеров
  Хотя современные персональные компьютеры (ПК) обладают впечатляющими возможностями, которые существенно расширились в связи с появлением 64-разрядных микропроцессоров, не следует по

Перспективы
  Компьютерная революция, произошедшая во второй половине прошлого века, связана, прежде всего, с рядом знаковых достижений в электронной, а точнее в микроэлектронной, технике. Именно

Функциональные возможности, номенклатура
  Персональный компьютер (ПК) – небольшой компьютер, основой которого служит МП, т.е. микрокомпьютер. Однако не все микрокомпьютеры являются персональными компьютерами. Микроко

Периферийных устройств
  Архитектура ПК определятся системой шин, с помощью которых ЦП связан с ОП и периферийными устройствами. Современная архитектура ПК является результатом довольно длительного

Рабочие станции, серверы и суперсерверы
  Создание RISC-процессоров и микросхем памяти с большой емкостью привело к окончательному оформлению настольных систем высокой производительности, которые сегодня известны как рабочи

Эволюция распределенных вычислительных систем
  В начале ХIX в. передача электроэнергии и коллективное ее использование привели к технической революции во всех областях деятельности человеческого общества. В наше время р

Способы передачи данных по физическим линиям
  Взаимное проникновение вычислительной техники и технических средств связи оказало серьезное влияние как на структуру компьютеров, так и на структуру каналов связи. Средства

Стандартизации, многоуровневый подход, стек протоколов
  Применение метода открытых систем в настоящее время является основной тенденцией в области информационных технологий и средств вычислительной техники, поддерживающих эти технологии.

Современное состояние и ближайшие перспективы
  Глобальные или всемирные сети (GAN – Global Area Network) предназначены для связи абонентов, расположенных в различных географических регионах, и включают в себя множество сетей раз

В развитии языков программирования
  Под языками программирования понимается система формальных обозначений для точного описания абстрактных структур данных и алгоритмов программ. Так же, как и любые языки, язык

Современных языков программирования
  Все языки программирования можно сгруппировать по некоторым признакам в ряд подгрупп (с определенной степенью условности). На рис. 4.2 представлен один из вариантов такого разбиения

Программирования
  Важнейшим из факторов, влияющих на разработку языков программирования, является архитектура компьютера. Большинство популярных языков последних 40 лет разрабатывалось на основе архи

Обеспечения и краткая характеристика отдельных частей
  До 70-х годов изготовители ЭВМ, как правило, продавали лишь изделие одного вида – аппаратуру (Hard ware). Операционные системы (ОС), вспомогательные служебные программы, пакеты прик

И функциональное назначение отдельных частей
Основу общесистемного ПО составляют ОС. Это – один из наиболее важных компонентов вычислительной системы независимо от класса ЭВМ, которая осуществляет интерфейсные функции между пользователем и ап

Сетевые операционные системы
  Большое разнообразие и различие функциональных возможностей ОС больших и малых ЭВМ 70-х – 80-х годов объясняется различием в уровне технических средств этих машин. Значительное увел

Общая структура программного обеспечения
  Все компоненты программного обеспечения, описанные в гл. 5, присутствуют и в структуре ПО ПК. Однако система программного обеспечения этого вида ЭВМ имеет ряд специфических особенно

Краткая характеристика ОС, применяемых в ПК
  До последнего времени для ПК IBM-клона применяются три типа локальных ОС: однопользовательская однозадачная DOS; однопользовательские многозадачные OS/2, Windows 9

Инструментальное программное обеспечение ПК
  На ПК, совместимых с IBM PC, реализованы практически все широко распространенные языки программирования, а многие из них имеют несколько независимых реализаций. Следует отметить ряд

Пакеты прикладных программ
  Разработка ППП является одним из основных направлений развития ПО ПК. Именно благодаря этому виду прикладного программного обеспечения ПК приобрели всеобщую популярность и стали нео

Проблемы информационной безопасности
  Проблема информационной безопасности возникла достаточно давно и имеет глубокие исторические корни. До сравнительно недавнего времени методы защиты информации были в исключительной

Воздействий
  Рассмотрим некоторые приемы и методы, связанные с защитой информации от случайных ошибок или некомпетентности пользователей, а также от сбоев аппаратуры, в частности из-за помех в э

О некоторых понятиях компьютерной безопасности
  Термины «информационная безопасность» (information security) и «безопасность сети» (network security) в широком смысле относятся к секретности, т.е. гарантии того, что информация и

От удаленных и локальных атак
  Говоря об удаленных атаках, следует отметить, что защита от них взаимосвязана с методами доступа и использованными пользователем ресурсами глобальной сети. Сети являются общедоступн

Компьютерные вирусы
  Проблема «вирусов» и «вирусной безопасности» возникла достаточно давно. Первые исследования саморазмножающихся искусственных технических и программных конструкций проводились в сере

Криптографические методы защиты информации
  Поскольку в основе всех автоматизированных сетевых и компьютерных систем безопасности находится криптография, пользователю любого уровня полезно иметь хотя бы общее представление об

Бизнес в Интернете
  В конце 1999 г. сразу два автомобильных гиганта Ford и General Motors объявили о своем намерении перевести большую часть своих коммерческих операций во Всемирную паутину и объединит

Правовое обеспечение информационной безопасности
  К правовым мерам обеспечения информационной безопасности относится: разработка норм, устанавливающих ответственность за компьютерные преступления; защита авторских прав программисто

Беспроводные среды
  По мере того как электронные информационные системы затрагивают все большие аспекты деятельности человека, необходимость привязываться к этим системам проводами в ряде случаев значи

Системы радиосвязи
Существует довольно большое количество разновидностей радиосвязи: радиорелейные прямой видимости и тропосферные, спутниковые, различных уровней, ионосферные и т.п. Однако все эти разновиднос

Спутниковая система связи
23 апреля 1965 г. был запущен на высокую эллиптическую орбиту спутник связи «Молния 1», который ознаменовал становление в нашей стране спутниковой радиосвязи. Почти одновременно в США был запущен н

Системы подвижной радиосвязи
  В настоящее время доминирующее положение на рынке подвижной радиосвязи занимают: профессиональные (частные) системы подвижной радиосвязи (PMR – Professional Mobil Radio, PA

Беспроводное подключение узлов в локальных сетях.
Беспроводная (wireless) связь в локальных сетях осуществляется в инфракрасном и радиочастотном диапазоне электромагнитных волн. Для организации беспроводного подключения узлов к сети требуется два

СПИСОК ТЕРМИНОВ И ОПРЕДЕЛЕНИЙ
  Алгоритм шифрования – различные способы преобразования текста. Аналоговые данные – физическая величина, которая может изменяться в непрерывном диапазоне значе

ТЕЛЕКОММУНИКАЦИОННЫЕ СИСТЕМЫ
  Учебное пособие   Редактор     Подписано в печать 15.10.2007. Формат 60х84 1/16 Уч.-изд.л. 20,0. Печ.л. 20,0. Ти

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги