рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Shortest-Job-First (SJF)

Shortest-Job-First (SJF) - раздел Информатика, Основы операционных систем При Рассмотрении Алгоритмов Fcfs И Rr Мы Видели, Насколько Существенным Для Н...

При рассмотрении алгоритмов FCFS и RR мы видели, насколько существенным для них является порядок расположения процессов в очереди процессов, готовых к исполнению. Если короткие задачи расположены в очереди ближе к ее началу, то общая производительность этих алгоритмов значительно возрастает. Если бы мы знали время следующих CPU burst для процессов, находящихся в состоянии готовность, то могли бы выбрать для исполнения не процесс из начала очереди, а процесс с минимальной длительностью CPU burst. Если же таких процессов два или больше, то для выбора одного из них можно использовать уже известный нам алгоритм FCFS. Квантование времени при этом не применяется. Описанный алгоритм получил название "кратчайшая работа первой" или Shortest Job First (SJF).

SJF-алгоритм краткосрочного планирования может быть как вытесняющим, так и невытесняющим. При невытесняющем SJF-планировании процессор предоставляется избранному процессу на все необходимое ему время, независимо от событий, происходящих в вычислительной системе. При вытесняющем SJF-планировании учитывается появление новых процессов в очереди готовых к исполнению (из числа вновь родившихся или разблокированных) во время работы выбранного процесса. Если CPU burst нового процесса меньше, чем остаток CPU burst у исполняющегося, то исполняющийся процесс вытесняется новым.

Рассмотрим пример работы невытесняющего алгоритма SJF. Пусть в состоянии готовность находятся четыре процесса, p0, p1, p2 и p3, для которых известны времена их очередных CPU burst. Эти времена приведены в таблице 3.4. Как и прежде, будем полагать, что вся деятельность процессов ограничивается использованием только одного промежутка CPU burst, что процессы не совершают операций ввода-вывода и что временем переключения контекста можно пренебречь.

Таблица 3.4.
Процесс p0 p1 p2 p3
Продолжительность очередного CPU burst

При использовании невытесняющего алгоритма SJF первым для исполнения будет выбран процесс p3, имеющий наименьшее значение продолжительности очередного CPU burst. После его завершения для исполнения выбирается процесс p1, затем p0 и, наконец, p2. Эта картина отражена в таблице 3.5.

Таблица 3.5.
Время
p0 Г Г Г Г И И И И И              
p1 Г И И И                        
p2 Г Г Г Г Г Г Г Г Г И И И И И И И
p3 И                              

Как мы видим, среднее время ожидания для алгоритма SJF составляет (4 + 1 + 9 + 0)/4 = 3,5 единицы времени. Легко посчитать, что для алгоритма FCFS при порядке процессов p0, p1, p2, p3 эта величина будет равняться (0 + 5 + 8 + 15)/4 = 7 единицам времени, т. е. будет в два раза больше, чем для алгоритма SJF. Можно показать, что для заданного набора процессов (если в очереди не появляются новые процессы) алгоритм SJF является оптимальным с точки зрения минимизации среднего времени ожидания среди класса невытесняющих алгоритмов.

Для рассмотрения примера вытесняющего SJF планирования мы возьмем ряд процессов p0, p1, p2 и p3 с различными временами CPU burst и различными моментами их появления в очереди процессов, готовых к исполнению (см. табл. 3.6.).

Таблица 3.6.
Процесс Время появления в очереди очередного CPU burst Продолжительность
p0
p1
p2
p3

В начальный момент времени в состоянии готовность находятся только два процесса, p0 и p3. Меньшее время очередного CPU burst оказывается у процесса p3, поэтому он и выбирается для исполнения (см. таблицу 3.7.). По прошествии 2 единиц времени в систему поступает процесс p1. Время его CPU burst меньше, чем остаток CPU burst у процесса p3, который вытесняется из состояния исполнение и переводится в состояние готовность. По прошествии еще 2 единиц времени процесс p1 завершается, и для исполнения вновь выбирается процесс p3. В момент времени t = 6 в очереди процессов, готовых к исполнению, появляется процесс p2, но поскольку ему для работы нужно 7 единиц времени, а процессу p3 осталось трудиться всего 1 единицу времени, то процесс p3 остается в состоянии исполнение. После его завершения в момент времени t = 7 в очереди находятся процессы p0 и p2, из которых выбирается процесс p0. Наконец, последним получит возможность выполняться процесс p2.

Таблица 3.7.
Время
p0 Г Г Г Г Г Г Г И И И И И И              
p1     И И                                
p2             Г Г Г Г Г Г Г И И И И И И И
p3 И И Г Г И И И                          

Основную сложность при реализации алгоритма SJF представляет невозможность точного знания продолжительности очередного CPU burst для исполняющихся процессов. В пакетных системах количество процессорного времени, необходимое заданию для выполнения, указывает пользователь при формировании задания. Мы можем брать эту величину для осуществления долгосрочного SJF-планирования. Если пользователь укажет больше времени, чем ему нужно, он будет ждать результата дольше, чем мог бы, так как задание будет загружено в систему позже. Если же он укажет меньшее количество времени, задача может не досчитаться до конца. Таким образом, в пакетных системах решение задачи оценки времени использования процессора перекладывается на плечи пользователя. При краткосрочном планировании мы можем делать только прогноз длительности следующего CPU burst, исходя из предыстории работы процесса. Пусть τ(n) – величина n-го CPU burst, T(n + 1) – предсказываемое значение для n + 1-го CPU burst, – некоторая величина в диапазоне от 0 до 1.

Определим рекуррентное соотношение

T(n+1)= τ(n)+(1-)T(n)

T(0) положим произвольной константой. Первое слагаемое учитывает последнее поведение процесса, тогда как второе слагаемое учитывает его предысторию. При = 0 мы перестаем следить за последним поведением процесса, фактически полагая

T(n)= T(n+1)=...=T(0)

т. е. оценивая все CPU burst одинаково, исходя из некоторого начального предположения.

Положив = 1, мы забываем о предыстории процесса. В этом случае мы полагаем, что время очередного CPU burst будет совпадать со временем последнего CPU burst:

T(n+1)= τ(n)

Обычно выбирают = 1/2 для равноценного учета последнего поведения и предыстории. Надо отметить, что такой выбор удобен и для быстрой организации вычисления оценки T(n + 1). Для подсчета новой оценки нужно взять старую оценку, сложить с измеренным временем CPU burst и полученную сумму разделить на 2, например, сдвинув ее на 1 бит вправо. Полученные оценки T(n + 1) применяются как продолжительности очередных промежутков времени непрерывного использования процессора для краткосрочного SJF-планирования.

– Конец работы –

Эта тема принадлежит разделу:

Основы операционных систем

Что такое операционная система Структура вычислительной системы... Что такое ОС... Большинство пользователей имеет опыт эксплуатации операционных систем но тем не менее они затруднятся дать этому...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Shortest-Job-First (SJF)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Структура вычислительной системы
Из чего состоит любая вычислительная система? Во-первых, из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор, память, монитор, дисков

Операционная система как виртуальная машина
При разработке ОС широко применяется абстрагирование, которое является важным методом упрощения и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов

Операционная система как менеджер ресурсов
Операционная система предназначена для управления всеми частями весьма сложной архитектуры компьютера. Представим, к примеру, что произойдет, если несколько программ, работающих на одном ком

Операционная система как защитник пользователей и программ
Если вычислительная система допускает совместную работу нескольких пользователей, то возникает проблема организации их безопасной деятельности. Необходимо обеспечить сохранность информации на диске

Операционная система как постоянно функционирующее ядро
Наконец, можно дать и такое определение: операционная система – это программа, постоянно работающая на компьютере и взаимодействующая со всеми прикладными программами. Казал

Краткая история эволюции вычислительных систем
Мы будем рассматривать историю развития именно вычислительных, а не операционных систем, потому что hardware и программное обеспечение эволюционировали совместно, оказывая взаимное влияние д

Системные вызовы
В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС. В операционных системах наиболее известной сов

Прерывания
Прерывание (hardware interrupt) – это событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо инф

Исключительные ситуации
Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Пр

Монолитное ядро
По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В эт

Многоуровневые системы (Layered systems)
Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты ур

Виртуальные машины
В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину, когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работа

Микроядерная архитектура
Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе

Смешанные системы
Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации

Реализация многозадачности
По числу одновременно выполняемых задач операционные системы можно разделить на два класса: многозадачные (Unix, OS/2, Windows); однозадачные (например, MS-DO

Многопроцессорная обработка
Вплоть до недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные системы

Системы реального времени
В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени, не упоминавшиеся до

Некоторые сведения об архитектуре компьютера
Основными аппаратными компонентами компьютера являются: основная память, центральный процессор и периферийные устройства. Для обмена данными между собой эти компоненты соединены группой пров

Взаимодействие с периферийными устройствами
Периферийные устройства предназначены для ввода и вывода информации. Каждое устройство обычно имеет в своем составе специализированный компьютер, называемый контроллером или адаптером. Когда контро

Round Robin (RR)
Модификацией алгоритма FCFS является алгоритм, получивший название Round Robin (Round Robin – это вид детской карусели в США) или сокращенно RR. По сути дела, это тот же самый алгоритм, только реал

Гарантированное планирование
При интерактивной работе N пользователей в вычислительной системе можно применить алгоритм планирования, который гарантирует, что каждый из пользователей будет иметь в своем распоряжении ~1/N часть

Приоритетное планирование
Алгоритмы SJF и гарантированного планирования представляют собой частные случаи приоритетного планирования. При приоритетном планировании каждому процессу присваивается определенное числовое значен

Многоуровневые очереди (Multilevel Queue)
Для систем, в которых процессы могут быть легко рассортированы по разным группам, был разработан другой класс алгоритмов планирования. Для каждой группы процессов создается своя очередь процессов,

Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
Дальнейшим развитием алгоритма многоуровневых очередей является добавление к нему механизма обратной связи. Здесь процесс не постоянно приписан к определенной очереди, а может мигрировать из одной

Требования, предъявляемые к алгоритмам
Организация взаимоисключения для критических участков, конечно, позволит избежать возникновения race condition, но не является достаточной для правильной и эффективной параллельной работы кооперати

Запрет прерываний
Наиболее простым решением поставленной задачи является следующая организация пролога и эпилога: while (some condition) { запретить все прерывания critical section разрешить все прерывания rem

Переменная-замок
В качестве следующей попытки решения задачи для пользовательских процессов рассмотрим другое предложение. Возьмем некоторую переменную, доступную всем процессам, с начальным значением равным 0. Про

Строгое чередование
Попробуем решить задачу сначала для двух процессов. Очередной подход будет также использовать общую для них обоих переменную с начальным значением 0. Только теперь она будет играть не роль замка дл

Флаги готовности
Недостаток предыдущего алгоритма заключается в том, что процессы ничего не знают о состоянии друг друга в текущий момент времени. Давайте попробуем исправить эту ситуацию. Пусть два наших процесса

Алгоритм Петерсона
Первое решение проблемы, удовлетворяющее всем требованиям и использующее идеи ранее рассмотренных алгоритмов, было предложено датским математиком Деккером (Dekker). В 1981 году Петерсон (Peterson)

Алгоритм булочной (Bakery algorithm)
Алгоритм Петерсона дает нам решение задачи корректной организации взаимодействия двух процессов. Давайте рассмотрим теперь соответствующий алгоритм для n взаимодействующих процессов, который получи

Аппаратная поддержка взаимоисключений
Наличие аппаратной поддержки взаимоисключений позволяет упростить алгоритмы и повысить их эффективность точно так же, как это происходит и в других областях программирования. Мы уже обращались к об

Команда Test-and-Set (проверить и присвоить 1)
О выполнении команды Test-and-Set, осуществляющей проверку значения логической переменной с одновременной установкой ее значения в 1, можно думать как о выполнении функции int Test_and_Set (i

Команда Swap (обменять значения)
Выполнение команды Swap, обменивающей два значения, находящихся в памяти, можно проиллюстрировать следующей функцией: void Swap (int *a, int *b){ int tmp = *a; *a = *b; *b = tmp; } Применя

Реализация мониторов и передачи сообщений с помощью семафоров
Рассмотрим сначала, как реализовать мониторы с помощью семафоров. Для этого нам нужно уметь реализовывать взаимоисключения при входе в монитор и условные переменные. Возьмем семафор mutex с начальн

Реализация семафоров и передачи сообщений с помощью мониторов
Нам достаточно показать, что с помощью мониторов можно реализовать семафоры, так как получать из семафоров сообщения мы уже умеем. Самый простой способ такой реализации выглядит следующим

Реализация семафоров и мониторов с помощью очередей сообщений
Покажем, наконец, как реализовать семафоры с помощью очередей сообщений. Для этого воспользуемся более хитрой конструкцией, введя новый синхронизирующий процесс. Этот процесс имеет счетчик и очеред

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги