рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Реализация мониторов и передачи сообщений с помощью семафоров

Реализация мониторов и передачи сообщений с помощью семафоров - раздел Информатика, Основы операционных систем Рассмотрим Сначала, Как Реализовать Мониторы С Помощью Семафоров. Для Этого Н...

Рассмотрим сначала, как реализовать мониторы с помощью семафоров. Для этого нам нужно уметь реализовывать взаимоисключения при входе в монитор и условные переменные. Возьмем семафор mutex с начальным значением 1 для реализации взаимоисключения при входе в монитор и по одному семафору ci для каждой условной переменной. Кроме того, для каждой условной переменной заведем счетчик fi для индикации наличия ожидающих процессов. Когда процесс входит в монитор, компилятор будет генерировать вызов функции monitor_enter, которая выполняет операцию P над семафором mutex для данного монитора. При нормальном выходе из монитора (то есть при выходе без вызова операции signal для условной переменной) компилятор будет генерировать вызов функции monitor_exit, которая выполняет операцию V над этим семафором.

Для выполнения операции wait над условной переменной компилятор будет генерировать вызов функции wait, которая выполняет операцию V для семафора mutex, разрешая другим процессам входить в монитор, и выполняет операцию P над соответствующим семафором ci, блокируя вызвавший процесс. Для выполнения операции signal над условной переменной компилятор будет генерировать вызов функции signal_exit, которая выполняет операцию V над ассоциированным семафором ci (если есть процессы, ожидающие соответствующего события), и выход из монитора, минуя функцию monitor_exit.

Semaphore mutex = 1; void monitor_enter(){ P(mutex); } void monitor_exit(){ V(mutex); } Semaphore ci = 0; int fi = 0; void wait(i){ fi=fi + 1; V(mutex); P(ci); fi=fi - 1;} void signal_exit(i){ if (fi)V(ci); else V(mutex);}

Заметим, что при выполнении функции signal_exit, если кто-либо ожидал этого события, процесс покидает монитор без увеличения значения семафора mutex, не разрешая тем самым всем процессам, кроме разбуженного, войти в монитор. Это увеличение совершит разбуженный процесс, когда покинет монитор обычным способом или когда выполнит новую операцию wait над какой-либо условной переменной.

Рассмотрим теперь, как реализовать передачу сообщений, используя семафоры. Для простоты опишем реализацию только одной очереди сообщений. Выделим в разделяемой памяти достаточно большую область под хранение сообщений, там же будем записывать, сколько пустых и заполненных ячеек находится в буфере, хранить ссылки на списки процессов, ожидающих чтения и памяти. Взаимоисключение при работе с разделяемой памятью будем обеспечивать семафором mutex. Также заведем по одному семафору ci на взаимодействующий процесс, для того чтобы обеспечивать блокирование процесса при попытке чтения из пустого буфера или при попытке записи в переполненный буфер. Посмотрим, как такой механизм будет работать. Начнем с процесса, желающего получить сообщение.

Процесс-получатель с номером i прежде всего выполняет операцию P(mutex), получая в монопольное владение разделяемую память. После чего он проверяет, есть ли в буфере сообщения. Если нет, то он заносит себя в список процессов, ожидающих сообщения, выполняет V(mutex) и P(ci). Если сообщение в буфере есть, то он читает его, изменяет счетчики буфера и проверяет, есть ли процессы в списке процессов, жаждущих записи. Если таких процессов нет, то выполняется V(mutex), и процесс-получатель выходит из критической области. Если такой процесс есть (с номером j), то он удаляется из этого списка, выполняется V для его семафора cj, и мы выходим из критического района. Проснувшийся процесс начинает выполняться в критическом районе, так как mutex у нас имеет значение 0 и никто более не может попасть в критический район. При выходе из критического района именно разбуженный процесс произведет вызов V(mutex).

Как строится работа процесса-отправителя с номером i? Процесс, посылающий сообщение, тоже ждет, пока он не сможет иметь монополию на использование разделяемой памяти, выполнив операцию P(mutex). Далее он проверяет, есть ли место в буфере, и если да, то помещает сообщение в буфер, изменяет счетчики и смотрит, есть ли процессы, ожидающие сообщения. Если нет, выполняет V(mutex) и выходит из критической области, если есть, "будит" один из них (с номером j), вызывая V(cj), с одновременным удалением этого процесса из списка процессов, ожидающих сообщений, и выходит из критического региона без вызова V(mutex), предоставляя тем самым возможность разбуженному процессу прочитать сообщение. Если места в буфере нет, то процесс-отправитель заносит себя в очередь процессов, ожидающих возможности записи, и вызывает V(mutex) и P(ci).

– Конец работы –

Эта тема принадлежит разделу:

Основы операционных систем

Что такое операционная система Структура вычислительной системы... Что такое ОС... Большинство пользователей имеет опыт эксплуатации операционных систем но тем не менее они затруднятся дать этому...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Реализация мониторов и передачи сообщений с помощью семафоров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Структура вычислительной системы
Из чего состоит любая вычислительная система? Во-первых, из того, что в англоязычных странах принято называть словом hardware, или техническое обеспечение: процессор, память, монитор, дисков

Операционная система как виртуальная машина
При разработке ОС широко применяется абстрагирование, которое является важным методом упрощения и позволяет сконцентрироваться на взаимодействии высокоуровневых компонентов

Операционная система как менеджер ресурсов
Операционная система предназначена для управления всеми частями весьма сложной архитектуры компьютера. Представим, к примеру, что произойдет, если несколько программ, работающих на одном ком

Операционная система как защитник пользователей и программ
Если вычислительная система допускает совместную работу нескольких пользователей, то возникает проблема организации их безопасной деятельности. Необходимо обеспечить сохранность информации на диске

Операционная система как постоянно функционирующее ядро
Наконец, можно дать и такое определение: операционная система – это программа, постоянно работающая на компьютере и взаимодействующая со всеми прикладными программами. Казал

Краткая история эволюции вычислительных систем
Мы будем рассматривать историю развития именно вычислительных, а не операционных систем, потому что hardware и программное обеспечение эволюционировали совместно, оказывая взаимное влияние д

Системные вызовы
В любой операционной системе поддерживается механизм, который позволяет пользовательским программам обращаться к услугам ядра ОС. В операционных системах наиболее известной сов

Прерывания
Прерывание (hardware interrupt) – это событие, генерируемое внешним (по отношению к процессору) устройством. Посредством аппаратных прерываний аппаратура либо инф

Исключительные ситуации
Исключительная ситуация (exception) – событие, возникающее в результате попытки выполнения программой команды, которая по каким-то причинам не может быть выполнена до конца. Пр

Монолитное ядро
По сути дела, операционная система – это обычная программа, поэтому было бы логично и организовать ее так же, как устроено большинство программ, то есть составить из процедур и функций. В эт

Многоуровневые системы (Layered systems)
Продолжая структуризацию, можно разбить всю вычислительную систему на ряд более мелких уровней с хорошо определенными связями между ними, так чтобы объекты уровня N могли вызывать только объекты ур

Виртуальные машины
В начале лекции мы говорили о взгляде на операционную систему как на виртуальную машину, когда пользователю нет необходимости знать детали внутреннего устройства компьютера. Он работа

Микроядерная архитектура
Современная тенденция в разработке операционных систем состоит в перенесении значительной части системного кода на уровень пользователя и одновременной минимизации ядра. Речь идет о подходе

Смешанные системы
Все рассмотренные подходы к построению операционных систем имеют свои достоинства и недостатки. В большинстве случаев современные операционные системы используют различные комбинации

Реализация многозадачности
По числу одновременно выполняемых задач операционные системы можно разделить на два класса: многозадачные (Unix, OS/2, Windows); однозадачные (например, MS-DO

Многопроцессорная обработка
Вплоть до недавнего времени вычислительные системы имели один центральный процессор. В результате требований к повышению производительности появились многопроцессорные системы

Системы реального времени
В разряд многозадачных ОС, наряду с пакетными системами и системами разделения времени, включаются также системы реального времени, не упоминавшиеся до

Некоторые сведения об архитектуре компьютера
Основными аппаратными компонентами компьютера являются: основная память, центральный процессор и периферийные устройства. Для обмена данными между собой эти компоненты соединены группой пров

Взаимодействие с периферийными устройствами
Периферийные устройства предназначены для ввода и вывода информации. Каждое устройство обычно имеет в своем составе специализированный компьютер, называемый контроллером или адаптером. Когда контро

Round Robin (RR)
Модификацией алгоритма FCFS является алгоритм, получивший название Round Robin (Round Robin – это вид детской карусели в США) или сокращенно RR. По сути дела, это тот же самый алгоритм, только реал

Shortest-Job-First (SJF)
При рассмотрении алгоритмов FCFS и RR мы видели, насколько существенным для них является порядок расположения процессов в очереди процессов, готовых к исполнению. Если короткие задачи расположены в

Гарантированное планирование
При интерактивной работе N пользователей в вычислительной системе можно применить алгоритм планирования, который гарантирует, что каждый из пользователей будет иметь в своем распоряжении ~1/N часть

Приоритетное планирование
Алгоритмы SJF и гарантированного планирования представляют собой частные случаи приоритетного планирования. При приоритетном планировании каждому процессу присваивается определенное числовое значен

Многоуровневые очереди (Multilevel Queue)
Для систем, в которых процессы могут быть легко рассортированы по разным группам, был разработан другой класс алгоритмов планирования. Для каждой группы процессов создается своя очередь процессов,

Многоуровневые очереди с обратной связью (Multilevel Feedback Queue)
Дальнейшим развитием алгоритма многоуровневых очередей является добавление к нему механизма обратной связи. Здесь процесс не постоянно приписан к определенной очереди, а может мигрировать из одной

Требования, предъявляемые к алгоритмам
Организация взаимоисключения для критических участков, конечно, позволит избежать возникновения race condition, но не является достаточной для правильной и эффективной параллельной работы кооперати

Запрет прерываний
Наиболее простым решением поставленной задачи является следующая организация пролога и эпилога: while (some condition) { запретить все прерывания critical section разрешить все прерывания rem

Переменная-замок
В качестве следующей попытки решения задачи для пользовательских процессов рассмотрим другое предложение. Возьмем некоторую переменную, доступную всем процессам, с начальным значением равным 0. Про

Строгое чередование
Попробуем решить задачу сначала для двух процессов. Очередной подход будет также использовать общую для них обоих переменную с начальным значением 0. Только теперь она будет играть не роль замка дл

Флаги готовности
Недостаток предыдущего алгоритма заключается в том, что процессы ничего не знают о состоянии друг друга в текущий момент времени. Давайте попробуем исправить эту ситуацию. Пусть два наших процесса

Алгоритм Петерсона
Первое решение проблемы, удовлетворяющее всем требованиям и использующее идеи ранее рассмотренных алгоритмов, было предложено датским математиком Деккером (Dekker). В 1981 году Петерсон (Peterson)

Алгоритм булочной (Bakery algorithm)
Алгоритм Петерсона дает нам решение задачи корректной организации взаимодействия двух процессов. Давайте рассмотрим теперь соответствующий алгоритм для n взаимодействующих процессов, который получи

Аппаратная поддержка взаимоисключений
Наличие аппаратной поддержки взаимоисключений позволяет упростить алгоритмы и повысить их эффективность точно так же, как это происходит и в других областях программирования. Мы уже обращались к об

Команда Test-and-Set (проверить и присвоить 1)
О выполнении команды Test-and-Set, осуществляющей проверку значения логической переменной с одновременной установкой ее значения в 1, можно думать как о выполнении функции int Test_and_Set (i

Команда Swap (обменять значения)
Выполнение команды Swap, обменивающей два значения, находящихся в памяти, можно проиллюстрировать следующей функцией: void Swap (int *a, int *b){ int tmp = *a; *a = *b; *b = tmp; } Применя

Реализация семафоров и передачи сообщений с помощью мониторов
Нам достаточно показать, что с помощью мониторов можно реализовать семафоры, так как получать из семафоров сообщения мы уже умеем. Самый простой способ такой реализации выглядит следующим

Реализация семафоров и мониторов с помощью очередей сообщений
Покажем, наконец, как реализовать семафоры с помощью очередей сообщений. Для этого воспользуемся более хитрой конструкцией, введя новый синхронизирующий процесс. Этот процесс имеет счетчик и очеред

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги