рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алгебраические системы

Алгебраические системы - раздел Информатика, ПРОГРАММА КУРСА МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕРИЯ АЛГОРИТМОВ Часто Объектом Изучения В Математике Служит Множество Вместе С Определенной Н...

Часто объектом изучения в математике служит множество вместе с определенной на нем структурой. Например, поля, формирующие основу обычной арифметики, линейные пространства, обеспечивающие связь геометрических объектов с операциями над числами, множества с выделенными на них бинарными отношениями. Все эти структуры образуют алгебраические системы, представляющие собой некоторые миры с определенными на них законами. Перейдем к точному определению алгебраической системы.

Напомним, что п-местным предикатом (отношением) на множестве А называется любое подмножество множества Аn; п-местной алгебраической операцией на множестве А называется функция F:An→A, где – n-я декартова степень множества А. Отметим, что поскольку операция F является функцией, для любого набора (x1,…,xn) An результат применения операции F(x1,…,xn) однозначно определен. Так как область значений операции F лежит в множестве А, то будем говорить, что операция F замкнута на множестве А.

Сигнатурой Σ называется совокупность предикатных и функциональных символов с указанием их местности. Константным символом или просто константой называется 0-местный функциональный символ. Если α ‑ функциональный или предикатный символ, то его местность обозначается через μ(α). Часто п-местные предикатные и функциональные символы будем обозначать соответственно через Р(n) и F(n), возможно с индексами. Если в рассматриваемой сигнатуре используются стандартные символы, такие, например, как + для операции сложения, ≤ для отношения порядка, | для отношения делимости, 0 для константного символа и другие, то мы просто пишем Σ={≤}, Σ={≤,+, ... , 0} и т.д.

Алгебраической системой сигнатуры Σ называется пара = где А – непустое множество и каждому n-местному предикатному (функциональному) символу из Σ поставлен в соответствие n-местный предикат (соответственно операция) на А. Множество А называется носителем, или универсумом алгебраической системы . Предикаты и функции, соответствующие символам из Σ, называются их интерпретациями. Обозначать интерпретации будем теми же буквами, что и соответствующие символы сигнатуры, возможно с индексом A. Заметим, что интерпретацией любого константного символа является некоторый элемент из А. Если Σ={α1,…, αn} – конечная сигнатура, то в записи фигурные скобки будем опускать.

Пример 1.1) Набор является алгебраической системой с двумя двухместными операциями.

2) Набор не является алгебраической системой, поскольку деление не является операцией на множестве , а элемент не принадлежит .

4) Набор является алгебраической системой, где т.е. множество всех подмножеств множества

Алгебраическая система = называется подсистемой системы = (обозначается ), если выполняются следующие условия:

а) А В;

б) для любого функционального символа F (n) Σ и любых элементов a1,a2,…,an A выполняется равенство FA(a1,a2,…,an)=FB(a1,a2,…,an), т.е. интерпретации символа F действуют одинаково на элементах из А;

в) для любого предикатного символа Р(n) Σ справедливо равенство P=∩An, т.е. предикат содержит в точности те кортежи предиката , которые состоят из элементов множества А.

Теорема 1.Если алгебраическая система, XВ, X≠Ø, то существует единственная подсистема (Х)= алгебраической системы такая, что X В(Х) и (Х) для любой подсистемы алгебраической системы , для которой XА.

Подсистема (Х) из теоремы 1 называется подсистемой алгебраической системы, порожденной множеством X.

Для описания элементов подсистемы (Х) определим индукцией по построению понятие терма сигнатуры Σ:

1) переменные и константные символы из Σ суть термы;

2) если F Σ ‑ n-местный функциональный символ, t1,t2,…,tn термы, то F(t1,t2,…,tn) ‑ терм;

3) никаких термов, кроме построенных по пп. 1,2, нет.
Множество всех термов сигнатуры Σ обозначается через Т(Σ).

Под сложностью терма будем понимать число символов, входящих в терм.

– Конец работы –

Эта тема принадлежит разделу:

ПРОГРАММА КУРСА МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕРИЯ АЛГОРИТМОВ

Логика это наука о законах мышления Это одна из древнейших наук Основные законы логики были сформулированы еще древнегреческим мыслителем... Современная математическая логика определяется как раздел математики... Данное учебно практическое пособие соответствует учебной программе курса Математическая логика и теория алгоритмов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алгебраические системы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРОГРАММА КУРСА МАТЕМАТИЧЕСКАЯ ЛОГИКА И ТЕРИЯ АЛГОРИТМОВ
Тема 1. «Совершенные дизъюнктивные нормальные формы (СДНФ) и совершенные конъюнктивные нормальные формы (СКНФ) в алгебре высказываний (АВ)». Формулы АВ. Эквивалентность формул АВ.

Формулы алгебры высказываний
Высказыванием называется повествовательное предложение, о котором в данной ситуации можно сказать, что оно истинно или ложно, но не то и другое одновременно. В качестве примеров выс

Эквивалентные формулы алгебры высказываний
Как показано в примере 1, различные формулы могут иметь одинаковые таблицы истинности. Так возникает понятие эквивалентности формул. Формулы φ и ψ АВ называются

Дизъюнктивные и конъюнктивные нормальные формы в алгебре высказываний
Если х — логическая переменная, δ {0,1}, то выражение   называется литерой. Литеры х и ¬х называются контрарными. Э

Определение формального исчисления
  Введем общее понятие формального исчисления. Будем говорить, что формальное исчисление I определено, если выполняются четыре условия. 1. Имеется некоторое множество

Система аксиом и правил вывода
Используя понятие формального исчисления, определим исчисление высказываний (ИВ). Алфавит ИВ состоит из букв x,y,z,u,v, возможно с индексами (которые называются про

Теорема о дедукции в исчислении высказываний
Теорема 1(о дедукции). Пусть φ1,…,φm,φ,ψ – формулы ИВ. Тогда φ1,…,φm,φ⊢

Теорема о замене в исчисления высказываний
Формулы φ и ψ назовем эквивалентными (обозначим φ≡ψ), если φ⊢ψ и ψ⊢φ.

Свойства выводимых и эквивалентных формул исчисления высказываний
Утверждение 3.Пусть φ,ψ, χ – формулы ИВ. Тогда 1) ⊢φ→φ; 2) φ∧ψ⊢φ;

Высказываний
Теорема 3.Пусть φ, ψ, χ ‑ формулы ИВ. Тогда имеют место следующие эквивалентности: 1) φ∧ φ≡φ, φ∨

Высказываний
  Формула φ(x1,…,xn) ИВ называется тождественно истинной (обозначается ⊨φ), если φ(x1,…,xn) – тож

Формулы логики предикатов
Большинство определений этого параграфа будут индуктивными. Введем понятие атомарной формулы сигнатуры Σ: 1) если t1, t2, T(Σ), то

В алгебраической системе
  Дадим индуктивное определение истинности формулы φ(x1,…,xn) сигнатуры Σ на элементах a1,…,an А в алгебраической с

Логическое следствие в логике предикатов
  Через обозначим кортеж переменных ; через ‑ . Пусть φ1(),…,φn(), ψ() – формулы сигнатуры . Формула ψ называетс

Эквивалентные формулы логики предикатов
Формулы φ и ψ сигнатуры называются эквивалентными (обозначается φ ≡ ψ), если φψ или ψ . Утвержден

Пренексная нормальная форма в логике предикатов
Формула φ сигнатуры Σ называется бескванторной, если она не содержит кванторов. Бескванторная формула φ является дизъюнктивной (конъюнктивной) нормальной форм

Система аксиом и правил вывода
  Зафиксируем некоторую произвольную сигнатуру Σ и определим исчисление предикатов сигнатуры Σ (ИПΣ). Формулами ИПΣ

Предикатов
Утверждение 2.В ИПΣ выполнимы все эквивалентности ИВ из теоремы 3. Утверждение 3. Пусть φ

Исчисления предикатов
Теорема 4. Все доказуемые в ИПΣ формулы являются тождественно истинными. Доказательство проводим индукцией по длине вывода формулы. Очевид

Машины Тьюринга
  Машина Тьюринга – это система, работающая в дискретные моменты времени и состоящая из следующих частей: конечная лента, разбитая на конечное число ячеек. В ка

Примитивно рекурсивные функции
  Базисными функциями называются следующие функции: – нулевая функция; – функция следования; – функция выбора. Оператор суперпозиции (подстановки) ставит в соот

Частично рекурсивные функции
  Оператор минимизации ставит в соответствие n+1-местной частичной функции n-местную частичную функцию так, что и или определены и не равны 0,

Совершенные дизъюнктивные нормальные формы, совершенные конъюнктивные нормальные формы
Построить таблицы истинности для следующих формул алгебры высказываний и привести эти формулы к СДНФ и СКНФ. 1. (x∧¬y)→(y∧z);

Логическое следствие в алгебре высказываний
Проверить истинность соотношений тремя способами (используя определение логического следствия и пп. 3,4 теоремы 2. 1. ; 2. ; 3. ; 4. ; 5. ; 6.

Исчисление высказываний
  Пусть - формулы исчисления высказываний. Построить вывод формулы исчисления высказываний из данного множества гипотез. 1. ; 2. ; 3. ; 4. ;

Алгебраические системы.
Построить подсистему алгебраической системы , порожденную множеством (через обозначен булеан множества B, т.е. множество всех подмножеств множества B): 1. 2.

Формулы логики предикатов
  Выписать все подформулы данной формулы сигнатуры и определить свободные и связанные переменные формулы: 1. 2. 3. 4. 5.

В алгебраической системе
  Написать формулу Ф(х), истинную в алгебраической системе тогда и только тогда, когда 1. х=1; 2. х=2n для некоторого натурального

Логическое следствие в логике предикатов
Пусть – формулы логики предикатов, и . . Доказать следующие соотношения. 1. ; 2. ; 3. ; 4. ; 5. ; 6. ; 7. ;

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги