рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Системное программное обеспечение

Системное программное обеспечение - раздел Информатика, Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО В Англоязычной Технической Литературе Термин System Software (Системное Про­г...

В англоязычной технической литературе термин System Software (системное про­граммное обеспечение) означает программы и комплексы программ, являющие­ся общими для всех, кто совместно использует технические средства компьютера, и применяемые как для автоматизации разработки (создания) новых программ, так и для организации выполнения программ существующих. С этих позиций системное программное обеспечение может быть разделено на следующие пять групп:

1. Операционные системы.

2. Системы управления файлами.

3. Интерфейсные оболочки для взаимодействия пользователя с ОС и программ­ные среды.

4. Системы программирования.

5. Утилиты.

Рассмотрим вкратце эти группы системных программ.

1. Под операционной системой (ОС) обычно понимают комплекс управляю­щих и обрабатывающих программ, который, с одной стороны, выступает как интерфейс между аппаратурой компьютера и пользователем с его задачами, а с другой — предназначен для наиболее эффективного использования ресур­сов вычислительной системы и организации надежных вычислений. Любой из компонентов прикладного программного обеспечения обязательно рабо­тает под управлением ОС. На рис. 1 изображена обобщенная структура про­граммного обеспечения вычислительной системы. Видно, что ни один из компонентов программного обеспечения, за исключением самой ОС, не име­ет непосредственного доступа к аппаратуре компьютера. Даже пользователи взаимодействуют со своими программами через интерфейс ОС. Любые их команды, прежде чем попасть в прикладную программу, сначала проходят через ОС.

Основными функциями, которые выполняет ОС, являются следующие:

  • прием от пользователя (или от оператора системы) заданий или команд, сформулированных на соответствующем языке — в виде директив (ко­манд) оператора или в виде указаний (своеобразных команд) с помощью соответствующего манипулятора (например, с помощью мыши), — и их обработка;
  • прием и исполнение программных запросов на запуск, приостановку, оста­новку других программ;
  • загрузка в оперативную память подлежащих исполнению программ;
  • инициация программы (передача ей управления, в результате чего процес­сор исполняет программу);
  • идентификация всех программ и данных;
  • взаимодействуют со своими программами через интерфейс ОС. Любые их команды, прежде чем попасть в прикладную программу, сначала проходят че­рез ОС.
  • обеспечение работы систем управлений файлами (СУФ) и/или систем управления базами данных (СУБД), что позволяет резко увеличить эф­фективность всего программного обеспечения;
  • обеспечение режима мультипрограммирования, то есть выполнение двух или более программ на одном процессоре, создающее видимость их одно­временного исполнения;
  • обеспечение функций по организации и управлению всеми операциями ввода/вывода;
  • удовлетворение жестким ограничениям на время ответа в режиме реаль­ного времени (характерно для соответствующих ОС);
  • распределение памяти, а в большинстве современных систем и организа­ция виртуальной памяти;
  • планирование и диспетчеризация задач в соответствии с заданными стра­тегией и дисциплинами обслуживания;
  • организация механизмов обмена сообщениями и данными между выпол­няющимися программами;
  • защита одной программы от влияния другой; обеспечение сохранности данных;
  • предоставление услуг на случай частичного сбоя системы;

обеспечение работы систем программирования, с помощью которых поль­зователи готовят свои программы.

2. Назначение системы управления файлами — организация более удобного доступа к данным, организованным как файлы. Именно благодаря системе управления файлами вместо низкоуровневого доступа к данным с указанием конкретных физических адресов нужной нам записи используется логиче­ский доступ с указанием имени файла и записи в нем. Как правило, все совре­менные ОС имеют соответствующие системы управления файлами. Однако выделение этого вида системного программного обеспечения в отдельную ка­тегорию представляется целесообразным, поскольку ряд ОС позволяет рабо­тать с несколькими файловыми системами (либо с одной из нескольких, либо сразу с несколькими одновременно). В этом случае говорят о монтируемых файловых системах (дополнительную систему управления файлами можно установить), и в этом смысле они самостоятельны. Более того, можно назвать примеры простейших ОС, которые могут работать и без файловых систем, а значит, им необязательно иметь систему управления файлами, либо они мо­гут работать с одной из выбранных файловых систем. Надо, однако, понимать, что любая система управления файлами не существует сама по себе — она разработана для работы в конкретной ОС и с конкретной файловой систе­мой. Можно сказать, что всем известная файловая система FAT (file allocation table) имеет множество реализаций как система управления файлами, напри­мер FAT-16 для самой MS-DOS, super-FAT для OS/2, FAT для Windows NT

и т. д. Другими словами, для работы с файлами, организованными в соответ­ствии с некоторой файловой системой, для каждой ОС должна быть разра­ботана соответствующая система управления файлами; и эта система управ­ления файлами будет работать только в той ОС, для которой она и создана.

Для удобства взаимодействия с ОС могут использоваться дополнительные интерфейсные оболочки. Их основное назначение — либо расширить возмож­ности по управлению ОС, либо изменить встроенные в систему возможности. В качестве классических примеров интерфейсных оболочек и соответствую­щих операционных сред выполнения программ можно назвать различные варианты графического интерфейса X Window в системах семейства UNIX (например, К Desktop Environment в Linux), PM Shell или Object Desktop в OS/2 с графическим интерфейсом Presentation Manager; наконец, можно указать разнообразные варианты интерфейсов для семейства ОС Windows компании Microsoft, которые заменяют Explorer и могут напоминать либо UNIX с его графическим интерфейсом, либо OS/2, либо MAC OS. Следует отметить, что о семействе ОС компании Microsoft с общим интерфейсом, реа­лизуемым программными модулями с названием Explorer (в файле system.ini, который находится в каталоге Windows, имеется строка SHELL=EXPLORER.EXE), все же можно сказать, что заменяемой в этих системах является только ин­терфейсная оболочка, в то время как сама операционная среда остается неиз­менной; она интегрирована в ОС. Другими словами, операционная среда определяется программными интерфейсами, то есть API (application program interface). Интерфейс прикладного программирования (API) включает в себя управление процессами, памятью и вводом/выводом.

Ряд операционных систем могут организовывать выполнение программ, соз­данных для других ОС. Например, в OS/2 можно выполнять как программы, созданные для самой OS/2, так и программы, предназначенные для выполне­ния в среде MS-DOS и Windows 3.x. Соответствующая операционная среда организуется в операционной системе в рамках отдельной виртуальной ма­шины. Аналогично, в системе Linux можно создать условия для выполнения некоторых программ, написанных для Windows 95/98. Определенными воз­можностями исполнения программ, созданных для иной операционной среды, обладает и Windows NT. Эта система позволяет выполнять некоторые про­граммы, созданные для MS-DOS, OS/2 1.x, Windows 3.x. Правда, в своем по­следнем семействе ОС Windows XP разработчики решили отказаться от поддержки возможности выполнения DOS-программ.

Наконец, к этому классу системного программного обеспечения следует отне­сти и эмуляторы, позволяющие смоделировать в одной операционной сис­теме какую-либо другую машину или операционную систему. Так, известна система эмуляции WMWARE, которая позволяет запустить в среде Linux любую другую ОС, например Windows. Можно, наоборот, создать эмулятор, работающий в среде Windows, который позволит смоделировать компьютер, работающий под управлением любой ОС, в том числе и под Linux.

Таким образом, термин операционная среда означает соответствующий интерфейс, необходимый программам для обращения к ОС с целью получить определенный сервис — выполнить операцию ввода/вывода, получить или освободить участок памяти и т. д.

3. Система программирования на рис. 1 представлена прежде всего такими компонентами, как транслятор с соответствующего языка, библиотеки подпрограмм, редакторы, компоновщики и отладчики. Не бывает самостоятельных (оторванных от ОС) систем программирования. Любая система программи­рования может работать только в соответствующей ОС, под которую она и создана, однако при этом она может позволять разрабатывать программное обеспечение и под другие ОС. Например, одна из популярных систем про­граммирования на языке C/C++ от фирмы Watcom для OS/2 позволяет по­лучать программы и для самой OS/2, и для DOS, и для Windows.

В том случае, когда создаваемые программы должны работать совсем на другой аппаратной базе, говорят о кросс-системах. Так, для ПК на базе микропроцес­соров семейства 180x86 имеется большое количество кросс-систем, позволяю­щих создавать программное обеспечение для различных микропроцессоров и микроконтроллеров.

4. Наконец, под утилитами понимают специальные системные программы, с по­мощью которых можно как обслуживать саму операционную систему, так и подготавливать для работы носители данных, выполнять перекодирование данных, осуществлять оптимизацию размещения данных на носителе и про­изводить некоторые другие работы, связанные с обслуживанием вычислитель­ной системы. К утилитам следует отнести и программу разбиения накопителя на магнитных дисках на разделы, и программу форматирования, и программу переноса основных системных файлов самой ОС. Также к утилитам относятся и небезызвестные комплексы программ от фирмы Symantec, носящие имя Питера Нортона (создателя этой фирмы и соавтора популярного набора ути­лит для первых IBM PC). Естественно, что утилиты могут работать только в соответствующей операционной среде.

Классификация ОС

Операционные системы могут различаться особенностями реализации внутренних алгоритмов управления основными ресурсами компьютера (процессорами, памятью, устройствами), особенностями использованных методов проектирования, типами аппаратных платформ, областями использования и многими другими свойствами.

Ниже приведена классификация ОС по нескольким наиболее основным признакам.

Особенности алгоритмов управления ресурсами

Характеризуя ОС, часто приводят важнейшие особенности реализации функций ОС по управлению процессорами, памятью, внешними устройствами автономного компьютера. Так, например, в зависимости от особенностей использованного алгоритма управления процессором, операционные системы делят на многозадачные и однозадачные, многопользовательские и однопользовательские, на системы, поддерживающие многонитевую обработку и не поддерживающие ее, на многопроцессорные и однопроцессорные системы.

Поддержка многозадачности. По числу одновременно выполняемых задач операционные системы могут быть разделены на два класса:

однозадачные (например, MS-DOS, MSX) и

многозадачные (OC EC, OS/2, UNIX, Windows 95).

Однозадачные ОС в основном выполняют функцию предоставления пользователю виртуальной машины, делая более простым и удобным процесс взаимодействия пользователя с компьютером. Однозадачные ОС включают средства управления периферийными устройствами, средства управления файлами, средства общения с пользователем.

Многозадачные ОС, кроме вышеперечисленных функций, управляют разделением совместно используемых ресурсов, таких как процессор, оперативная память, файлы и внешние устройства.

Поддержка многопользовательского режима. По числу одновременно работающих пользователей ОС делятся на:

  • однопользовательские (MS-DOS, Windows 3.x, ранние версии OS/2);
  • многопользовательские (UNIX, Windows NT).

Главным отличием многопользовательских систем от однопользовательских является наличие средств защиты информации каждого пользователя от несанкционированного доступа других пользователей. Следует заметить, что не всякая многозадачная система является многопользовательской, и не всякая однопользовательская ОС является однозадачной.

Вытесняющая и невытесняющая многозадачность. Важнейшим разделяемым ресурсом является процессорное время. Способ распределения процессорного времени между несколькими одновременно существующими в системе процессами (или нитями) во многом определяет специфику ОС. Среди множества существующих вариантов реализации многозадачности можно выделить две группы алгоритмов:

невытесняющая многозадачность (NetWare, Windows 3.x);

вытесняющая многозадачность (Windows NT, OS/2, UNIX).

Основным различием между вытесняющим и невытесняющим вариантами многозадачности является степень централизации механизма планирования процессов. В первом случае механизм планирования процессов целиком сосредоточен в операционной системе, а во втором - распределен между системой и прикладными программами. При невытесняющей многозадачности активный процесс выполняется до тех пор, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению процесс. При вытесняющей многозадачности решение о переключении процессора с одного процесса на другой принимается операционной системой, а не самим активным процессом.

Поддержка многонитевости. Важным свойством операционных систем является возможность распараллеливания вычислений в рамках одной задачи. Многонитевая ОС разделяет процессорное время не между задачами, а между их отдельными ветвями (нитями).

Многопроцессорная обработка. Другим важным свойством ОС является отсутствие или наличие в ней средств поддержки многопроцессорной обработки - мультипроцессирование. Мультипроцессирование приводит к усложнению всех алгоритмов управления ресурсами.

В наши дни становится общепринятым введение в ОС функций поддержки многопроцессорной обработки данных. Такие функции имеются в операционных системах Solaris 2.x фирмы Sun, Open Server 3.x компании Santa Crus Operations, OS/2 фирмы IBM, Windows NT фирмы Microsoft и NetWare 4.1 фирмы Novell.

Многопроцессорные ОС могут классифицироваться по способу организации вычислительного процесса в системе с многопроцессорной архитектурой: асимметричные ОС и симметричные ОС. Асимметричная ОС целиком выполняется только на одном из процессоров системы, распределяя прикладные задачи по остальным процессорам. Симметричная ОС полностью децентрализована и использует весь пул процессоров, разделяя их между системными и прикладными задачами.

Выше были рассмотрены характеристики ОС, связанные с управлением только одним типом ресурсов - процессором.

Особенности аппаратных платформ

На свойства операционной системы непосредственное влияние оказывают аппаратные средства, на которые она ориентирована. По типу аппаратуры различают операционные системы персональных компьютеров, мини-компьютеров, мейнфреймов, кластеров и сетей ЭВМ. Среди перечисленных типов компьютеров могут встречаться как однопроцессорные варианты, так и многопроцессорные. В любом случае специфика аппаратных средств, как правило, отражается на специфике операционных систем.

Очевидно, что ОС большой машины является более сложной и функциональной, чем ОС персонального компьютера. Так в ОС больших машин функции по планированию потока выполняемых задач, очевидно, реализуются путем использования сложных приоритетных дисциплин и требуют большей вычислительной мощности, чем в ОС персональных компьютеров. Аналогично обстоит дело и с другими функциями.

Сетевая ОС имеет в своем составе средства передачи сообщений между компьютерами по линиям связи, которые совершенно не нужны в автономной ОС. На основе этих сообщений сетевая ОС поддерживает разделение ресурсов компьютера между удаленными пользователями, подключенными к сети. Для поддержания функций передачи сообщений сетевые ОС содержат специальные программные компоненты, реализующие популярные коммуникационные протоколы, такие как IP, IPX, Ethernet и другие.

Многопроцессорные системы требуют от операционной системы особой организации, с помощью которой сама операционная система, а также поддерживаемые ею приложения могли бы выполняться параллельно отдельными процессорами системы. Параллельная работа отдельных частей ОС создает дополнительные проблемы для разработчиков ОС, так как в этом случае гораздо сложнее обеспечить согласованный доступ отдельных процессов к общим системным таблицам, исключить эффект гонок и прочие нежелательные последствия асинхронного выполнения работ.

Другие требования предъявляются к операционным системам кластеров. Кластер - слабо связанная совокупность нескольких вычислительных систем, работающих совместно для выполнения общих приложений, и представляющихся пользователю единой системой. Наряду со специальной аппаратурой для функционирования кластерных систем необходима и программная поддержка со стороны операционной системы, которая сводится в основном к синхронизации доступа к разделяемым ресурсам, обнаружению отказов и динамической реконфигурации системы. Одной из первых разработок в области кластерных технологий были решения компании Digital Equipment на базе компьютеров VAX. Недавно этой компанией заключено соглашение с корпорацией Microsoft о разработке кластерной технологии, использующей Windows NT. Несколько компаний предлагают кластеры на основе UNIX-машин.

Наряду с ОС, ориентированными на совершенно определенный тип аппаратной платформы, существуют операционные системы, специально разработанные таким образом, чтобы они могли быть легко перенесены с компьютера одного типа на компьютер другого типа, так называемые мобильные ОС. Наиболее ярким примером такой ОС является популярная система UNIX. В этих системах аппаратно-зависимые места тщательно локализованы, так что при переносе системы на новую платформу переписываются только они. Средством, облегчающем перенос остальной части ОС, является написание ее на машинно-независимом языке, например, на С, который и был разработан для программирования операционных систем.

Особенности областей использования

Многозадачные ОС подразделяются на три типа в соответствии с использованными при их разработке критериями эффективности:

системы пакетной обработки (например, OC EC),

системы разделения времени (UNIX, VMS),

системы реального времени (QNX, RT/11).

Системы пакетной обработки предназначались для решения задач в основном вычислительного характера, не требующих быстрого получения результатов. Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для достижения этой цели в системах пакетной обработки используются следующая схема функционирования: в начале работы формируется пакет заданий, каждое задание содержит требование к системным ресурсам; из этого пакета заданий формируется мультипрограммная смесь, то есть множество одновременно выполняемых задач. Для одновременного выполнения выбираются задачи, предъявляющие отличающиеся требования к ресурсам, так, чтобы обеспечивалась сбалансированная загрузка всех устройств вычислительной машины; так, например, в мультипрограммной смеси желательно одновременное присутствие вычислительных задач и задач с интенсивным вводом-выводом. Таким образом, выбор нового задания из пакета заданий зависит от внутренней ситуации, складывающейся в системе, то есть выбирается "выгодное" задание. Следовательно, в таких ОС невозможно гарантировать выполнение того или иного задания в течение определенного периода времени. В системах пакетной обработки переключение процессора с выполнения одной задачи на выполнение другой происходит только в случае, если активная задача сама отказывается от процессора, например, из-за необходимости выполнить операцию ввода-вывода. Поэтому одна задача может надолго занять процессор, что делает невозможным выполнение интерактивных задач. Таким образом, взаимодействие пользователя с вычислительной машиной, на которой установлена система пакетной обработки, сводится к тому, что он приносит задание, отдает его диспетчеру-оператору, а в конце дня после выполнения всего пакета заданий получает результат. Очевидно, что такой порядок снижает эффективность работы пользователя.

Системы разделения времени призваны исправить основной недостаток систем пакетной обработки - изоляцию пользователя-программиста от процесса выполнения его задач. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой. Так как в системах разделения времени каждой задаче выделяется только квант процессорного времени, ни одна задача не занимает процессор надолго, и время ответа оказывается приемлемым. Если квант выбран достаточно небольшим, то у всех пользователей, одновременно работающих на одной и той же машине, складывается впечатление, что каждый из них единолично использует машину. Ясно, что системы разделения времени обладают меньшей пропускной способностью, чем системы пакетной обработки, так как на выполнение принимается каждая запущенная пользователем задача, а не та, которая "выгодна" системе, и, кроме того, имеются накладные расходы вычислительной мощности на более частое переключение процессора с задачи на задачу. Критерием эффективности систем разделения времени является не максимальная пропускная способность, а удобство и эффективность работы пользователя.

Системы реального времени применяются для управления различными техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка или технологическими процессами, такими, как гальваническая линия, доменный процесс и т.п. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом, в противном случае может произойти авария: спутник выйдет из зоны видимости, экспериментальные данные, поступающие с датчиков, будут потеряны, толщина гальванического покрытия не будет соответствовать норме. Таким образом, критерием эффективности для систем реального времени является их способность выдерживать заранее заданные интервалы времени между запуском программы и получением результата (управляющего воздействия). Это время называется временем реакции системы, а соответствующее свойство системы - реактивностью. Для этих систем мультипрограммная смесь представляет собой фиксированный набор заранее разработанных программ, а выбор программы на выполнение осуществляется исходя из текущего состояния объекта или в соответствии с расписанием плановых работ.

Некоторые операционные системы могут совмещать в себе свойства систем разных типов, например, часть задач может выполняться в режиме пакетной обработки, а часть - в режиме реального времени или в режиме разделения времени. В таких случаях режим пакетной обработки часто называют фоновым режимом.

Особенности методов построения

При описании операционной системы часто указываются особенности ее структурной организации и основные концепции, положенные в ее основу.

К таким базовым концепциям относятся:

Способы построения ядра системы - монолитное ядро или микроядерный подход. Большинство ОС использует монолитное ядро, которое компонуется как одна программа, работающая в привилегированном режиме и использующая быстрые переходы с одной процедуры на другую, не требующие переключения из привилегированного режима в пользовательский и наоборот. Альтернативой является построение ОС на базе микроядра, работающего также в привилегированном режиме и выполняющего только минимум функций по управлению аппаратурой, в то время как функции ОС более высокого уровня выполняют специализированные компоненты ОС - серверы, работающие в пользовательском режиме. При таком построении ОС работает более медленно, так как часто выполняются переходы между привилегированным режимом и пользовательским, зато система получается более гибкой - ее функции можно наращивать, модифицировать или сужать, добавляя, модифицируя или исключая серверы пользовательского режима. Кроме того, серверы хорошо защищены друг от друга, как и любые пользовательские процессы.

Построение ОС на базе объектно-ориентированного подхода дает возможность использовать все его достоинства, хорошо зарекомендовавшие себя на уровне приложений, внутри операционной системы, а именно: аккумуляцию удачных решений в форме стандартных объектов, возможность создания новых объектов на базе имеющихся с помощью механизма наследования, хорошую защиту данных за счет их инкапсуляции во внутренние структуры объекта, что делает данные недоступными для несанкционированного использования извне, структуризованность системы, состоящей из набора хорошо определенных объектов.

Наличие нескольких прикладных сред дает возможность в рамках одной ОС одновременно выполнять приложения, разработанные для нескольких ОС. Многие современные операционные системы поддерживают одновременно прикладные среды MS-DOS, Windows, UNIX (POSIX), OS/2 или хотя бы некоторого подмножества из этого популярного набора. Концепция множественных прикладных сред наиболее просто реализуется в ОС на базе микроядра, над которым работают различные серверы, часть которых реализуют прикладную среду той или иной операционной системы.

Распределенная организация операционной системы позволяет упростить работу пользователей и программистов в сетевых средах. В распределенной ОС реализованы механизмы, которые дают возможность пользователю представлять и воспринимать сеть в виде традиционного однопроцессорного компьютера. Характерными признаками распределенной организации ОС являются: наличие единой справочной службы разделяемых ресурсов, единой службы времени, использование механизма вызова удаленных процедур (RPC) для прозрачного распределения программных процедур по машинам, многонитевой обработки, позволяющей распараллеливать вычисления в рамках одной задачи и выполнять эту задачу сразу на нескольких компьютерах сети, а также наличие других распределенных служб.

– Конец работы –

Эта тема принадлежит разделу:

Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО

Программное обеспечение это общий термин для обозначения quot неосязаемых quot в отличие от физических составных частей компьютерной системы... Программное обеспечение можно разделить на две группы системное программное... СПО управляет ресурсами компьютерной системы и позволяет пользователям программировать в более выразительных языках...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Системное программное обеспечение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие операционной среды
Операционная система выполняет функции управления вычислительными про­цессами в вычислительной системе, распределяет ресурсы вычислительной сис­темы между различными вычислительными процессами и об

Понятия вычислительного процесса и ресурса
Понятие «вычислительный процесс» (или просто — «процесс») является одним из основных при рассмотрении операционных систем. Последовательный процесс (иногда называемый «задачей») — это выполнение от

Диаграмма состояний процесса
Необходимо различать системные управляющие процессы, представляющие ра­боту супервизора операционной системы и занимающиеся распределением и управ­лением ресурсов, от всех других процессов: системн

Реализация понятия последовательного процесса в ОС
Контекст и дескриптор процесса На протяжении существования процесса его выполнение может быть многократно прервано и продолжено. Для того, чтобы возобновить выполнение процесса, необходимо

Процессы и треды
Понятие процесса было введено для реализации идей мультипрограммирования. Напомним, в свое время различали термины «мультизадачность» и «мультипро­граммирование». Таким образом, для реализации «мул

Прерывания
Прерывания представляют собой механизм, позволяющий координировать па­раллельное функционирование отдельных устройств вычислительной системы и реагировать на особые состояния, возникающие при работ

Основные виды ресурсов
Рассмотрим кратко основные виды ресурсов вычислительной системы и спосо­бы их разделения. Прежде всего, одним из важнейших ресурсов является сам процессор, точнее — процессорное время. Процессорное

Управление задачами в операционных системах
Итак, время центрального процессора и оперативная память являются основными ресурсами в случае реализации мультипрограммных вычислений. Оперативная память — это важнейший ресурс любой вычи

Стратегии планирования
Прежде всего следует отметить, что при рассмотрении стратегий планирования, как правило, идет речь о краткосрочном планировании, то есть о диспетчериза­ции. Долгосрочное планирование, как мы уже от

Дисциплины диспетчеризации
Когда говорят о диспетчеризации, то всегда в явном или неявном виде имеют в виду понятие задачи (потока). Если ОС не поддерживает механизм тредов, то можно заменять понятие задачи на понятие процес

Вытесняющие и не вытесняющие алгоритмы диспетчеризации
Диспетчеризация без перераспределения процессорного времени, то есть не вы­тесняющая многозадачность (non-preemptive multitasking) — это такой способ диспетчеризации процессов, при котором активный

Диспетчеризация задач с использованием динамических приоритетов
При выполнении программ, реализующих какие-либо задачи контроля и управ­ления (что характерно, прежде всего, для систем реального времени), может случиться такая ситуация, когда одна или несколько

Управление памятью.
Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной систем

Управление вводом/выводом
Необходимость обеспечить программам возможность осуществлять обмен дан­ными с внешними устройствами и при этом не включать в каждую двоичную программу соответствующий двоичный код, осуществляющий с

Режимы управления вводом/выводом
Как известно, имеются два основных режима ввода/вывода: режим обмена с опро­сом готовности устройства ввода/вывода и режим обмена с прерываниями. Рас­смотрим рис. 4.1.

Закрепление устройств, общие устройства ввода/вывода
Как известно, многие устройства не допускают совместного использования. Пре­жде всего, это устройства с последовательным доступом. Такие устройства могут стать закрепленными, то есть быть предостав

Основные системные таблицы ввода/вывода
Каждая ОС имеет свои таблицы ввода/вывода, их состав (количество и назначе­ние каждой таблицы) может сильно отличаться. В некоторых ОС вместо таблиц создаются списки, хотя использование статических

Синхронный и асинхронный ввод/вывод
Задача, выдавшая запрос на операцию ввода/вывода, переводится супервизором в состояние ожидания завершения заказанной операции. Когда супервизор по­лучает от секции завершения сообщение о том, что

Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
Как известно, накопители на магнитных дисках обладают крайне низкой скоро­стью по сравнению с быстродействием центральной части компьютера. Разница в быстродействии отличается на несколько порядков

Файловая система.
Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совмест

Имена файлов
  Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времен

Типы файлов
  Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.   Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые

Логическая организация файла
  Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись - это наименьший элемент да

Физическая организация и адрес файла
  Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности на диске. Файл состоит из физических записей - блоков. Блок - наименьшая

Кэширование диска
  В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой б

Общая модель файловой системы
Функционирование любой файловой системы можно представить многоуровневой моделью, в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в с

Отображаемые в память файлы
  По сравнению с доступом к памяти, традиционный доступ к файлам выглядит запутанным и неудобным. По этой причине некоторые ОС, начиная с MULTICS, обеспечивают отображение файлов в ад

Современные архитектуры файловых систем
  Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В новом понимании файловая система состоит из

Принципы построения интерфейсов операционных систем
Напомним, что ОС всегда выступает как интерфейс между аппаратурой компью­тера и пользователем с его задачами. Под интерфейсами операционных систем здесь и далее следует понимать специальные интерфе

Интерфейс прикладного программирования
Прежде всего необходимо однозначно разделить общий термин API (application program interface, интерфейс прикладного программирования) на следующие направления: API как интерфейс высо

Реализация функций API на уровне ОС
При реализации функций API на уровне ОC за их выполнение ответственность несет ОС. Объектный код, выполняющий функции, либо непосредственно входит в состав ОС (или даже ядра ОС), либо поставляется

Реализация функций API на уровне системы программирования
Если функции API реализуются на уровне системы программирования, они пре­доставляются пользователю в виде библиотеки функций соответствующего язы­ка программирования. Обычно речь идет о библиотеке

Реализация функций API с помощью внешних библиотек
При реализации функций API с помощью внешних библиотек они предоставля­ются пользователю в виде библиотеки процедур и функций, созданной сторон­ним разработчиком. Причем разработчиком такой библиот

Платформенно-независимый интерфейс POSIX
POSIX (Portable Operating System Interface for Computer Environments) — платформенно независимый системный интерфейс для компьютерного окружения. Это стандарт IEEE, описывающий системные интерфейсы

Проектирование параллельных взаимодействующих вычислительных процессов
При создании современных приложений, позволяющих использовать все возмож­ности операционных систем в плане организации параллельных и распределен­ных вычислений, одной из важнейших проблем является

Независимые и взаимодействующие вычислительные процессы
Основной особенностью мультипрограммных операционных систем является то, что в их среде параллельно развивается несколько (последовательных) вычисли­тельных процессов. С точки зрения внешнего наблю

Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
Все известные средства для решения проблемы взаимного исключения основа­ны на использовании специально введенных аппаратных возможностей, к кото­рым относятся блокировка памяти, специальные команды

Использование блокировки памяти при синхронизации параллельных процессов
Все вычислительные машины и системы имеют такое средство для организации взаимного ис­ключения, как блокировка памяти. Это средство запрещает одновременное ис­полнение двух (и более) команд, которы

Алгоритм Деккера
Алгоритм Деккера основан на использовании трех переменных (листинг 6.4): перекл1, перекл2 и ОЧЕРЕДЬ. Пусть по-прежнему переменная перекл1=true тогда, ког­да процесс ПР1 хочет войти в свой критическ

Семафорные примитивы Дейкстры
Понятие семафорных механизмов было введено Дейкстрой. Семафор — пе­ременная специального типа, которая доступна параллельным процессам для проведения над ней только двух операций: «закрытия» и «отк

Мьютексы
Одним из вариантов семафорных механизмов для организации взаимного ис­ключения являются так называемые мъютексы (mutex). Термин mutex произо­шел от английского словосочетания mutual exclusion semap

Использование семафоров при проектировании взаимодействующих вычислительных процессов
Семафорные примитивы чрезвычайно широко используются при проектирова­нии разнообразных вычислительных процессов. При этом некоторые задачи яв­ляются настолько «типичными», что их детальное рассмотр

Мониторы Хоара
Анализ рассмотренных задач показывает, что, несмотря на очевидные достоинст­ва (простота, независимость от количества процессов, отсутствие «активного ожидания»), семафорные механизмы имеют и ряд н

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги