рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дисциплины диспетчеризации

Дисциплины диспетчеризации - раздел Информатика, Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО Когда Говорят О Диспетчеризации, То Всегда В Явном Или Неявном Виде Имеют В В...

Когда говорят о диспетчеризации, то всегда в явном или неявном виде имеют в виду понятие задачи (потока). Если ОС не поддерживает механизм тредов, то можно заменять понятие задачи на понятие процесса. Так как эти термины часто используются именно в таком смысле, мы вынуждены будем использовать тер­мин «процесс» как синоним термина «задача».

Известно большое количество правил (дисциплин диспетчеризации), в соответ­ствии с которыми формируется список (очередь) готовых к выполнению задач. Различают два больших класса дисциплин обслуживания — бесприоритетные и приоритетные. При бесприоритетном обслуживании выбор задачи произво­дится в некотором заранее установленном порядке без учета их относительной важности и времени обслуживания. При реализации приоритетных дисциплин обслуживания отдельным задачам предоставляется преимущественное право по­пасть в состояние исполнения. Перечень дисциплин обслуживания и их класси­фикация приведены на рис. 2.1.

Запомним о приоритетах следующее:

  • приоритет, присвоенный задаче, может являться величиной постоянной;
  • приоритет задачи может изменяться в процессе ее решения.

Диспетчеризация с динамическими приоритетами требует дополнительных рас­ходов на вычисление значений приоритетов исполняющихся задач, поэтому во многих ОС реального времени используются методы диспетчеризации на основе статических (постоянных) приоритетов. Хотя надо заметить, что динамические приоритеты позволяют реализовать гарантии обслуживания задач.

Рассмотрим кратко некоторые основные (наиболее часто используемые) дисци­плины диспетчеризации.

Самой простой в реализации является дисциплина FCFS (first come — first served), согласно которой задачи обслуживаются «в порядке очереди», то есть в порядке их появления. Те задачи, которые были заблокированы в процессе работы (попа­ли в какое-либо из состояний ожидания, например, из-за операций ввода/выво­да), после перехода в состояние готовности ставятся в эту очередь готовности перед теми задачами, которые еще не выполнялись. Другими словами, образу­ются две очереди (рис. 2.2): одна очередь образуется из новых задач, а вторая очередь — из ранее выполнявшихся, но попавших в состояние ожидание. Такой подход позволяет реализовать стратегию обслуживания «по возможности закан­чивать вычисления в порядке их появления». Эта дисциплина обслуживания не требует внешнего вмешательства в ход вычислений, при ней не происходит перераспределение процессорного времени. Существующие дисциплины дис­петчеризации процессов могут быть разбиты на два класса — вытесняющие (pre­emptive) и не вытесняющие (non-preemptive). В первых пакетных ОС часто реализовывали параллельное выполнение заданий без принудительного пере­распределения процессора между задачами. В большинстве современных ОС для мощных вычислительных систем, а также и в ОС для ПК, ориентированных на высокопроизводительное выполнение приложений (Windows NT, OS/2, Linux), реализована вытесняющая многозадачность. Можно сказать, что рассмотренная дисциплина относится к не вытесняющим.

К достоинствам этой дисциплины, прежде всего, можно отнести простоту реали­зации и малые расходы системных ресурсов на формирование очереди задач.

Однако эта дисциплина приводит к тому, что при увеличении загрузки вычисли­тельной системы растет и среднее время ожидания обслуживания, причем ко­роткие задания (требующие небольших затрат машинного времени) вынуждены ожидать столько же, сколько и трудоемкие задания. Избежать этого недостатка позволяют дисциплины SJN и SRT.

Дисциплина обслуживания SJN (shortest job next, что означает: следующим будет выполняться кратчайшее задание) требует, чтобы для каждого задания была из­вестна оценка в потребностях машинного времени. Необходимость сообщать ОС характеристики задач, в которых описывались бы потребности в ресурсах вычис­лительной системы, привела к тому, что были разработаны соответствующие языковые средства. В частности, язык JCL (job control language, язык управле­ния заданиями) был одним из наиболее известных. Пользователи вынуждены были указывать предполагаемое время выполнения, и для того, чтобы они не злоупотребляли возможностью указать заведомо меньшее время выполнения (с целью получить результаты раньше других), ввели подсчет реальных потреб­ностей. Диспетчер задач сравнивал заказанное время и время выполнения, и в случае превышения указанной оценки в данном ресурсе ставил данное задание не в начало, а в конец очереди. Еще в некоторых ОС в таких случаях использова­лась система штрафов, при которой в случае превышения заказанного машинно­го времени оплата вычислительных ресурсов осуществлялась уже по другим рас­ценкам.

Дисциплина обслуживания SJN предполагает, что имеется только одна очередь заданий, готовых к выполнению. И задания, которые в процессе своего исполне­ния были временно заблокированы (например, ожидали завершения операций ввода/вывода), вновь попадают в конец очереди готовых к выполнению наравне с вновь поступающими. Это приводит к тому, что задания, которым требуется очень немного времени для своего завершения, вынуждены ожидать процессор наравне с длительными работами, что не всегда хорошо.

Для устранения этого недостатка и была предложена дисциплина SRT (shortest remaining time, следующее задание требует меньше всего времени для своего за­вершения).

Все эти три дисциплины обслуживания могут использоваться для пакетных ре­жимов обработки, когда пользователь не вынужден ожидать реакции системы, а просто сдает свое задание и через несколько часов получает свои результаты вычислений. Для интерактивных же вычислений желательно прежде всего обес­печить приемлемое время реакции системы и равенство в обслуживании, если система является мультитерминальной. Если же это однопользовательская сис­тема, но с возможностью мультипрограммной обработки, то желательно, чтобы те программы, с которыми мы сейчас непосредственно работаем, имели лучшее время реакции, нежели наши фоновые задания. При этом мы можем пожелать, чтобы некоторые приложения, выполняясь без нашего непосредственного уча­стия (например, программа получения электронной почты, использующая модем и коммутируемые линии для передачи данных), тем не менее гарантированно по­лучали необходимую им долю процессорного времени. Для решения подобных проблем используется дисциплина обслуживания, называемая RR (round robin, круговая, карусельная), и приоритетные методы обслуживания.

Дисциплина обслуживания RR предполагает, что каждая задача получает процес­сорное время порциями (говорят: квантами времени, q). После окончания кван­та времени q задача снимается с процессора и он передается следующей задаче. Снятая задача ставится в конец очереди задач, готовых к выполнению. Эта дис­циплина обслуживания иллюстрируется рис. 2.3. Для оптимальной работы сис­темы необходимо правильно выбрать закон, по которому кванты времени выде­ляются задачам.

Величина кванта времени q выбирается как компромисс между приемлемым временем реакции системы на запросы пользователей (с тем, чтобы их простей­шие запросы не вызывали длительного ожидания) и накладными расходами на частую смену контекста задач. Очевидно, что при прерываниях ОС вынуждена сохранить достаточно большой объем информации о текущем (прерываемом) процессе, поставить дескриптор снятой задачи в очередь, загрузить контекст за­дачи, которая теперь будет выполняться (ее дескриптор был первым в очереди готовых к исполнению). Если величина q велика, то при увеличении очереди го­товых к выполнению задач реакция системы станет плохой. Если же величина мала, то относительная доля накладных расходов на переключения между ис­полняющимися задачами станет большой и это ухудшит производительность системы. В некоторых ОС есть возможность указывать в явном виде величину q либо диапазон ее возможных значений, поскольку система будет стараться вы­бирать оптимальное значение сама.

Например, в OS/2 в файле CONFIG.SYS есть возможность с помощью оператора TIMESLICE указать минимальное и максимальное значение для кванта q. Так, на­пример, строка TIMESLICE=32,256 указывает, что минимальное значение q равно 32 миллисекундам, а максимальное — 256. Если некоторая задача (тред) была пре­рвана, поскольку выделенный ей квант времени q израсходован, то следующий выделенный ему интервал будет увеличен на время, равное одному периоду тай­мера (около 32 мс), и так до тех пор, пока квант времени не станет равным мак­симальному значению, указанному в операторе TIMESLICE. Этот метод позволяет OS/2 уменьшить накладные расходы на переключение задач в том случае, если несколько задач параллельно выполняют длительные вычисления.

Дисциплина диспетчеризации RR — это одна из самых распространенных дис­циплин. Однако бывают ситуации, когда ОС не поддерживает в явном виде дис­циплину карусельной диспетчеризации. Например, в некоторых ОС реального времени используется диспетчер задач, работающий по принципам абсолютных приоритетов (процессор предоставляется задаче с максимальным приоритетом, а при равенстве приоритетов он действует по принципу очередности). Дру­гими словами, снять задачу с выполнения может только появление задачи с бо­лее высоким приоритетом. Поэтому если нужно организовать обслуживание за­дач таким образом, чтобы все они получали процессорное время равномерно и равноправно, то системный оператор может сам организовать эту дисциплину. Для этого достаточно всем пользовательским задачам присвоить одинаковые приоритеты и создать одну высокоприоритетную задачу, которая не должна ни­чего делать, но которая, тем не менее, будет по таймеру (через указанные интер­валы времени) планироваться на выполнение. Эта задача снимет с выполнения текущее приложение, оно будет поставлено в конец очереди, и поскольку этой высокоприоритетной задаче на самом деле ничего делать не надо, то она тут же освободит процессор и из очереди готовности будет взята следующая задача.

В своей простейшей реализации дисциплина карусельной диспетчеризации пред­полагает, что все задачи имеют одинаковый приоритет. Если же необходимо вве­сти механизм приоритетного обслуживания, то это, как правило, делается за счет организации нескольких очередей. Процессорное время будет предоставляться в первую очередь тем задачам, которые стоят в самой привилегированной очереди. Если она пустая, то диспетчер задач начнет просматривать остальные очереди. Именно по такому алгоритму действует диспетчер задач в операционных систе­мах OS/2 и Windows NT.

– Конец работы –

Эта тема принадлежит разделу:

Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО

Программное обеспечение это общий термин для обозначения quot неосязаемых quot в отличие от физических составных частей компьютерной системы... Программное обеспечение можно разделить на две группы системное программное... СПО управляет ресурсами компьютерной системы и позволяет пользователям программировать в более выразительных языках...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дисциплины диспетчеризации

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системное программное обеспечение
В англоязычной технической литературе термин System Software (системное про­граммное обеспечение) означает программы и комплексы программ, являющие­ся общими для всех, кто совместно использует техн

Понятие операционной среды
Операционная система выполняет функции управления вычислительными про­цессами в вычислительной системе, распределяет ресурсы вычислительной сис­темы между различными вычислительными процессами и об

Понятия вычислительного процесса и ресурса
Понятие «вычислительный процесс» (или просто — «процесс») является одним из основных при рассмотрении операционных систем. Последовательный процесс (иногда называемый «задачей») — это выполнение от

Диаграмма состояний процесса
Необходимо различать системные управляющие процессы, представляющие ра­боту супервизора операционной системы и занимающиеся распределением и управ­лением ресурсов, от всех других процессов: системн

Реализация понятия последовательного процесса в ОС
Контекст и дескриптор процесса На протяжении существования процесса его выполнение может быть многократно прервано и продолжено. Для того, чтобы возобновить выполнение процесса, необходимо

Процессы и треды
Понятие процесса было введено для реализации идей мультипрограммирования. Напомним, в свое время различали термины «мультизадачность» и «мультипро­граммирование». Таким образом, для реализации «мул

Прерывания
Прерывания представляют собой механизм, позволяющий координировать па­раллельное функционирование отдельных устройств вычислительной системы и реагировать на особые состояния, возникающие при работ

Основные виды ресурсов
Рассмотрим кратко основные виды ресурсов вычислительной системы и спосо­бы их разделения. Прежде всего, одним из важнейших ресурсов является сам процессор, точнее — процессорное время. Процессорное

Управление задачами в операционных системах
Итак, время центрального процессора и оперативная память являются основными ресурсами в случае реализации мультипрограммных вычислений. Оперативная память — это важнейший ресурс любой вычи

Стратегии планирования
Прежде всего следует отметить, что при рассмотрении стратегий планирования, как правило, идет речь о краткосрочном планировании, то есть о диспетчериза­ции. Долгосрочное планирование, как мы уже от

Вытесняющие и не вытесняющие алгоритмы диспетчеризации
Диспетчеризация без перераспределения процессорного времени, то есть не вы­тесняющая многозадачность (non-preemptive multitasking) — это такой способ диспетчеризации процессов, при котором активный

Диспетчеризация задач с использованием динамических приоритетов
При выполнении программ, реализующих какие-либо задачи контроля и управ­ления (что характерно, прежде всего, для систем реального времени), может случиться такая ситуация, когда одна или несколько

Управление памятью.
Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной систем

Управление вводом/выводом
Необходимость обеспечить программам возможность осуществлять обмен дан­ными с внешними устройствами и при этом не включать в каждую двоичную программу соответствующий двоичный код, осуществляющий с

Режимы управления вводом/выводом
Как известно, имеются два основных режима ввода/вывода: режим обмена с опро­сом готовности устройства ввода/вывода и режим обмена с прерываниями. Рас­смотрим рис. 4.1.

Закрепление устройств, общие устройства ввода/вывода
Как известно, многие устройства не допускают совместного использования. Пре­жде всего, это устройства с последовательным доступом. Такие устройства могут стать закрепленными, то есть быть предостав

Основные системные таблицы ввода/вывода
Каждая ОС имеет свои таблицы ввода/вывода, их состав (количество и назначе­ние каждой таблицы) может сильно отличаться. В некоторых ОС вместо таблиц создаются списки, хотя использование статических

Синхронный и асинхронный ввод/вывод
Задача, выдавшая запрос на операцию ввода/вывода, переводится супервизором в состояние ожидания завершения заказанной операции. Когда супервизор по­лучает от секции завершения сообщение о том, что

Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
Как известно, накопители на магнитных дисках обладают крайне низкой скоро­стью по сравнению с быстродействием центральной части компьютера. Разница в быстродействии отличается на несколько порядков

Файловая система.
Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совмест

Имена файлов
  Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времен

Типы файлов
  Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.   Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые

Логическая организация файла
  Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись - это наименьший элемент да

Физическая организация и адрес файла
  Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности на диске. Файл состоит из физических записей - блоков. Блок - наименьшая

Кэширование диска
  В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой б

Общая модель файловой системы
Функционирование любой файловой системы можно представить многоуровневой моделью, в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в с

Отображаемые в память файлы
  По сравнению с доступом к памяти, традиционный доступ к файлам выглядит запутанным и неудобным. По этой причине некоторые ОС, начиная с MULTICS, обеспечивают отображение файлов в ад

Современные архитектуры файловых систем
  Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В новом понимании файловая система состоит из

Принципы построения интерфейсов операционных систем
Напомним, что ОС всегда выступает как интерфейс между аппаратурой компью­тера и пользователем с его задачами. Под интерфейсами операционных систем здесь и далее следует понимать специальные интерфе

Интерфейс прикладного программирования
Прежде всего необходимо однозначно разделить общий термин API (application program interface, интерфейс прикладного программирования) на следующие направления: API как интерфейс высо

Реализация функций API на уровне ОС
При реализации функций API на уровне ОC за их выполнение ответственность несет ОС. Объектный код, выполняющий функции, либо непосредственно входит в состав ОС (или даже ядра ОС), либо поставляется

Реализация функций API на уровне системы программирования
Если функции API реализуются на уровне системы программирования, они пре­доставляются пользователю в виде библиотеки функций соответствующего язы­ка программирования. Обычно речь идет о библиотеке

Реализация функций API с помощью внешних библиотек
При реализации функций API с помощью внешних библиотек они предоставля­ются пользователю в виде библиотеки процедур и функций, созданной сторон­ним разработчиком. Причем разработчиком такой библиот

Платформенно-независимый интерфейс POSIX
POSIX (Portable Operating System Interface for Computer Environments) — платформенно независимый системный интерфейс для компьютерного окружения. Это стандарт IEEE, описывающий системные интерфейсы

Проектирование параллельных взаимодействующих вычислительных процессов
При создании современных приложений, позволяющих использовать все возмож­ности операционных систем в плане организации параллельных и распределен­ных вычислений, одной из важнейших проблем является

Независимые и взаимодействующие вычислительные процессы
Основной особенностью мультипрограммных операционных систем является то, что в их среде параллельно развивается несколько (последовательных) вычисли­тельных процессов. С точки зрения внешнего наблю

Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
Все известные средства для решения проблемы взаимного исключения основа­ны на использовании специально введенных аппаратных возможностей, к кото­рым относятся блокировка памяти, специальные команды

Использование блокировки памяти при синхронизации параллельных процессов
Все вычислительные машины и системы имеют такое средство для организации взаимного ис­ключения, как блокировка памяти. Это средство запрещает одновременное ис­полнение двух (и более) команд, которы

Алгоритм Деккера
Алгоритм Деккера основан на использовании трех переменных (листинг 6.4): перекл1, перекл2 и ОЧЕРЕДЬ. Пусть по-прежнему переменная перекл1=true тогда, ког­да процесс ПР1 хочет войти в свой критическ

Семафорные примитивы Дейкстры
Понятие семафорных механизмов было введено Дейкстрой. Семафор — пе­ременная специального типа, которая доступна параллельным процессам для проведения над ней только двух операций: «закрытия» и «отк

Мьютексы
Одним из вариантов семафорных механизмов для организации взаимного ис­ключения являются так называемые мъютексы (mutex). Термин mutex произо­шел от английского словосочетания mutual exclusion semap

Использование семафоров при проектировании взаимодействующих вычислительных процессов
Семафорные примитивы чрезвычайно широко используются при проектирова­нии разнообразных вычислительных процессов. При этом некоторые задачи яв­ляются настолько «типичными», что их детальное рассмотр

Мониторы Хоара
Анализ рассмотренных задач показывает, что, несмотря на очевидные достоинст­ва (простота, независимость от количества процессов, отсутствие «активного ожидания»), семафорные механизмы имеют и ряд н

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги