Элементарная логика

В отличие от естественных наук, компьютерные науки получили большой стимул от широкого и непрерывного взаимодействия с логикой. Особую роль в компьютерных науках играют доказательные методы разработки алгоритмов и программ с доказательствами их правильности.

Тестирование программ может выявить наличие ошибок в программах, но не может гарантировать их отсутствие. Гарантии отсутствия ошибок в алгоритмах и программах могут дать только доказательства их правильности. Алгоритм не содержит ошибок, если он дает правильные решения для всех допустимых данных.

Серьёзнейшей проблемой для компьютерных наук и информатики является наличие ошибок в алгоритмах и программах, публикуемых в учебниках и учебных пособиях, а также неумение преподавателей и учителей информатики выявлять и исправлять ошибки в алгоритмах и программах, составленных учащимися.

Единственный путь для преодоления этих проблем—это изучение систематических методов составления алгоритмов и программ с одновременным анализом их правильности в рамках доказательного программирования с самого начала обучения основам алгоритмизации и программирования.

Сложность для преподавателей и программистов заключается в том, что они должны уметь писать не только алгоритмы и программы, но и доказательства правильности своих алгоритмов и программ. Что сейчас не умеют делать ни математики, ни программисты.

В результате программисты пишут программы с большим числом ошибок, которые они не могут ни выявить, ни исправить. Массированное тестирование программ на ЭВМ приносит программистам несомненную пользу, однако не дает гарантий полного избавления от ошибок.

Практика применения и изучения доказательных методов программирования показала, что эта технология вполне доступна студентам математических факультетов, которым вполне по силам написание доказательств правильности алгоритмов, после проверки и тестирования программ на ЭВМ.

Наибольший эффект в освоении технологий доказательного программирования наблюдается в олимпиадах по информатике и программированию, где победителями и призёрами становятся те студенты, которые освоили технику тестирования программ на ЭВМ и составления алгоритмов и программ без ошибок.

Логи́ческое программи́рование — парадигма программирования, основанная на автоматическом доказательстве теорем, а также раздел дискретной математики, изучающий принципы логического вывода информации на основе заданных фактов и правил вывода. Логическое программирование основано на теории и аппарате математической логики с использованием математических принципов резолюций.

Самым известным языком логического программирования является Prolog.

Первым языком логического программирования был язык Planner (см. обзор Шапиро (Ehud Shapiro) [1989]), в котором была заложена возможность автоматического вывода результата из данных и заданных правил перебора вариантов (совокупность которых называлась планом). Planner использовался для того, чтобы понизить требования к вычислительным ресурсам (с помощью метода backtracking) и обеспечить возможность вывода фактов, без активного использования стека. Затем был разработан язык Prolog, который не требовал плана перебора вариантов и был, в этом смысле, упрощением языка Planner.

От языка Planner также произошли логические языки программирования QA-4, Popler, Conniver и QLISP. Языки программирования Mercury, Visual Prolog, Oz и Fril произошли уже от языка Prolog. На базе языка Planner было разработано также несколько альтернативных языков логического программирования, не основанных на методе поиска с возвратами (backtracking), например, Ether (см. обзор Шапиро [1989])