Сообщения

Для прямой и непрямой адресации достаточно двух примитивов, чтобы описать передачу сообщений по линии связи – send и receive. В случае прямой адресации мы будем обозначать их так:

send(P, message) – послать сообщение message процессу P;
receive(Q, message) – получить сообщение message от процесса Q.

В случае непрямой адресации мы будем обозначать их так:

send(A, message) – послать сообщение message в почтовый ящик A;
receive(A, message) – получить сообщение message из почтового ящика A.

Примитивы send и receive уже имеют скрытый от наших глаз механизм взаимоисключения. Более того, в большинстве систем они уже имеют и скрытый механизм блокировки при чтении из пустого буфера и при записи в полностью заполненный буфер. Реализация решения задачи producer-consumer для таких примитивов становится неприлично тривиальной. Надо отметить, что, несмотря на простоту использования, передача сообщений в пределах одного компьютера происходит существенно медленнее, чем работа с семафорами и мониторами.

23.ТУПИКИ. УСЛОВИЯ СУЩЕСТВОВАНИЯ ТУПИКОВ.

Предположим, что несколько процессов конкурируют за обладание конечным числом ресурсов. Если запрашиваемый процессом ресурс недоступен, ОС переводит данный процесс в состояние ожидания. В случае когда требуемый ресурс удерживается другим ожидающим процессом, первый процесс не сможет сменить свое состояние. Такая ситуация называется тупиком (deadlock).

В общем случае проблема тупиков эффективного решения не имеет.

Рассмотрим пример. Предположим, что два процесса осуществляют вывод с ленты на принтер. Один из них успел монополизировать ленту и претендует на принтер, а другой наоборот. После этого оба процесса оказываются заблокированными в ожидании второго ресурса (см. рис. 7.1).

 

Определение. Множество процессов находится в тупиковой ситуации, если каждый процесс из множества ожидает события, которое может вызвать только другой процесс данного множества. Так как все процессы чего-то ожидают, то ни один из них не сможет инициировать событие, которое разбудило бы другого члена множества и, следовательно, все процессы будут спать вместе.

Выше приведен пример взаимоблокировки, возникающей при работе с так называемыми выделенными устройствами. Тупики, однако, могут иметь место и в других ситуациях. Hапример, в системах управления базами данных записи могут быть локализованы процессами, чтобы избежать состояния гонок (см. лекцию 5 "Алгоритмы синхронизации").

Тупики также могут быть вызваны ошибками программирования.