рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЛАВА 1. ВВЕДЕНИЕ В ИНФОРМАТИКУ

ГЛАВА 1. ВВЕДЕНИЕ В ИНФОРМАТИКУ - раздел Информатика, Глава 1. Введение В Информатику ...

ГЛАВА 1. ВВЕДЕНИЕ В ИНФОРМАТИКУ

Определение информатики. Понятие информации и информационной технологии. Формула Шеннона. Предмет и задачи информатики

  В 1948 г. американский математик Норберт Винер объявил о создании новой науки… Термин «информация» как научный термин введен Клодом Шенноном – автором теории информации (науки об оптимальном…

Техническая база информатики

Из истории создания и развития ЭВМ

Механические средства для вычислений были известны еще в далеком прошлом. Одно из самых древних вычислительных средств – счеты – использовалось… Чарльз Беббидж (1792 – 1871), английский физик и астроном, первый… В 1937 г. английский математик Алан Тьюринг опубликовал работу с описанием универсальной схемы вычислений. Его…

Классификация ЭВМ

 

Под ЭВМ понимается большое число разнообразных машин, различающихся размерами, производительностью, стоимостью, назначением. Возможны разные типы классификаций вычислительных устройств. Если в качестве основания взять производительность, то можно построить следующую классификацию ЭВМ:

– суперЭВМ;

– большие ЭВМ;

– миниЭВМ;

– микроЭВМ и микропроцессоры, встраиваемые в механизмы, приборы и машины.

Супер- и большие ЭВМ предназначены для решения сложных научных и технических задач. МиниЭВМ используются в системах автоматизации управления и проектирования. МикроЭВМ, или персональные ЭВМ, решают конкретные пользовательские задачи.

Классическая архитектура ЭВМ общего назначения

 

Классическая архитектура ЭВМ разработана американским инженером фон Нейманом, поэтому ее еще называют неймановской архитектурой. Согласно Нейману, в состав ЭВМ входит пять функционально независимых блоков: устройство ввода информации в ЭВМ (Увв), запоминающее устройство (ЗУ), арифметико-логическое устройство (АЛУ), устройство управления (УУ) и уст-

ройство вывода информации из ЭВМ (Увыв) (рис. 2).

 

 

Рис. 2. Неймановская архитектура ЭВМ

 

Устройство ввода принимает кодированную информацию из внешней среды от человека-оператора или электромеханического прибора. Информация запоминается в ЗУ для последующего использования или сразу обрабатывается АЛУ. Шаги обработки информации определены программой, хранящейся в памяти ЭВМ. Результаты обработки возвращаются во внешнюю среду через устройство вывода. Все эти действия координируются устройством управления.

Обычно схемы АЛУ компонуются вместе со схемами УУ в виде одного блока, называемого центральным процессором (ЦП). Оборудование ввода и вывода объединяется термином «устройство ввода-вывода» (Увв-выв).

В ЭВМ информация поступает двух типов: в виде команд и в виде данных. Команды, или инструкции, выполняют две функции: 1) управляют передачей информации внутри ЭВМ, а также между ЭВМ и внешней средой; 2) указывают, какие арифметические и логические операции должны быть выполнены. Последовательность команд, которые обеспечивают решение задачи, называется программой. Обычно решение задачи начинается с загрузки программы в память. Затем ЦП извлекает команды из ЗУ и выполняет предусмотренные операции. Таким образом, ЭВМ находится под полным управлением выполняемой программы, кроме тех случаев, когда поступают сигналы прерывания от оператора или электронных устройств, связанных с ЭВМ.

Определим данные как кодированную информацию, которая обрабатывается командами программы.

Информация в ЭВМ должна быть представлена в соответствующем формате. Поскольку ЭВМ состоит из электронных и цифровых схем, элементы которых имеют два устойчивых состояния, то используется двоичная система счисления для кодирования информации: каждое число, символ текста или команда кодируются цепочкой двоичных цифр – бит (см. раздел 2.2. Системы счисления).

Рассмотрим более подробно назначение и примеры отдельных устройств ЭВМ.

Устройство ввода информации. Функция этого устройства очевидна – ввод информации в ЭВМ из внешней среды. В качестве Увв выступают клавиатура, дисплей (монитор), вспомогательные дисплейные устройства ввода (различного типа манипуляторы, световое перо).

Запоминающее устройство (память). Единственная функция ЗУ – хранение программ и данных. Различают три класса устройств памяти: постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ) и внешние запоминающие устройства (ВЗУ).

ПЗУ – это неизменяемая память ЭВМ, назначение которой хранить служебные программы, необходимые для работы системы.

ОЗУ – это быстродействующее запоминающее устройство. Оно содержит большое количество ячеек памяти, каждая из которых хранит 1 бит информации. Ячейки связаны в группы фиксированных размеров, называемые машинными словами. ОЗУ организовано таким образом, чтобы содержимое из n бит можно было найти или запомнить при помощи одной операции. Для облегчения доступа к любому слову ОЗУ с положением каждого слова связано некоторое имя (адрес). Длина машинного слова определяется разрядностью ЦП.

Для хранения большого объема данных применяются более дешевые ВЗУ, использующие в качестве носителей информации магнитные ленты и диски, оптические диски или электронные носители.

Устройство вывода информации. Выполняет обратную функцию по сравнению с устройствами ввода. Некоторые устройства совмещают обе функции, поэтому часто используется общий термин – устройство ввода-вывода. К устройствам вывода относятся дисплеи, печатающие устройства (принтеры), графопостроители (плоттеры).

Центральный процессор. Большинство операций в ЭВМ выполняется в АЛУ. Например, необходимо сложить два числа в оперативной памяти – они передаются в АЛУ, в нем складываются. Аналогично выполняется любая другая арифметическая или логическая операция. Для ускорения вычислений ЦП имеет высокоскоростные ячейки памяти – регистры – для временного хранения данных. ЦП – наиболее скоростное устройство ЭВМ, поэтому один ЦП может управлять рядом внешних устройств.

Все описанные устройства обеспечивают необходимые средства для хранения и обработки информации. Действия этих устройств должны быть согласованы, что является функцией УУ.

Структура шин

Существуют разные способы организации структуры ЭВМ. Набор проводов, обеспечивающих необходимые связи между отдельными блоками ЭВМ, называются…  

Структура ЭВМ 5-го поколения

Работу пользователя ЭВМ в настоящее время можно представить с помощью схемы, представленной на рис.7.  

Системы обработки данных

Отдельная ЭВМ или процессор являются элементами, позволяющими строить сложные вычислительные системы обработки данных. Система обработки данных… В состав технических средств СОД входит оборудование для ввода, хранения,…  

Классификация СОД

 

СОД можно классифицировать на основе способа построения. На рис. 9 представлена такая классификация.

Рис. 9. Классификация СОД

 

Одномашинные СОД. Исторически первыми были одномашинные СОД, построенные на базе единственной ЭВМ с классической однопроцессорной структурой. К настоящему времени накоплен значительный опыт проектирования и эксплуатации таких СОД. Однако производительность и надежность таких систем оказывается удовлетворительной для ограниченного применения, когда требуется относительно невысокая производительность и допускается простой системы в течение нескольких часов из-за отказов оборудования. К настоящему времени мы пришли к физическому пределу быстродействия элементов электронных схем ЭВМ, а стало быть к пределу производительности систем на базе таких ЭВМ. Кроме того, при любом уровне технологии невозможно обеспечить абсолютную надежность элементной базы и поэтому нельзя исключить для таких СОД возможность потери работоспособности.

Вычислительные комплексы. Начиная с 60-х гг. XX в. для повышения надежности и производительности СОД несколько ЭВМ связывались между собой, образуя многомашинный вычислительный комплекс (ВК). В ранних ВК связь между ЭВМ обеспечивалась через ВЗУ, т.е. за счет доступа к общим наборам данных. Такая связь называется косвенной и оказывается эффективной только тогда, когда ЭВМ взаимодействуют редко (рис. 10, а).

Более оперативное взаимодействие ЭВМ достигается за счет прямой связи через адаптер, обеспечивающий обмен данными и передачу сигналов прерывания через каналы ввода-вывода (КВВ) двух ЭВМ (рис. 10, б). За счет этого создаются хорошие условия для координации процессов обработки данных и повышается оперативность обмена данными, что позволяет вести параллельную обработку данных и существенно увеличить производительность СОД.

а) б)

Рис. 10. Способы связи отдельных ЭВМ в вычислительном комплексе

а – косвенная связь; б – прямая связь

 

В многомашинных ВК взаимодействие процессов обработки данных осуществляется только за счет обмена сигналами прерывания и передачи данных через адаптеры КВВ или ВЗУ. Лучшие условия для взаимодействия процессов обработки данных – когда все процессы имеют доступ ко всему объему данных и могут взаимодействовать со всеми периферийными устройствами ВК. ВК, содержащие несколько процессоров с общим ЗУ и периферийными устройствами, называются многопроцессорными ВК. Пример такого комплекса приведен на рис. 11.

Процессоры (Пр), модули оперативной памяти (МП) и каналы ввода-вывода (КВВ), к которым подключены периферийные устройства (ПУ), объединены в единый комплекс с помощью средств коммутации, обеспечивающих доступ каждого процессора к любому модулю оперативной памяти и к каналу ввода-вывода. В многопроцессорном комплексе отказы отдельных устройств влияют на работоспособность СОД в меньшей степени, чем в многомашинном ВК. Многопроцессорные ВК позволяют вести параллельную обработку инфор-мации.

 

Рис. 11. Структура многопроцессорного комплекса

 

Многомашинные и многопроцессорные ВК являются базовыми средствами для создания СОД различного назначения. Поэтому в состав ВК принято включать только технические и общесистемные средства, но не прикладное программное обеспечение.

Вычислительные системы. СОД, настроенная на решение задач в конкретной области применения, называется вычислительной системой. Вычислительная система включает в себя технические средства и программное обеспечение, ориентированные на решение определенной совокупности задач. Существует два способа ориентации систем:

– вычислительная система может строиться на основе ЭВМ или ВК общего назначения, а ориентация системы осуществляется за счет программных средств ( прикладных программ и, возможно, операционной системы);

– ориентация на заданный комплекс задач может достигаться за счет использования специализированных ЭВМ и ВК. Специализированные вычислительные системы наиболее широко используются при решении задач векторной и матричной алгебры, задач, связанных с решением интегральных и дифференциальных уравнений, обработкой изображений, распознаванием образов и т.д.

Вычислительные системы, построенные на основе специализированных ВК, начали интенсивно разрабатываться с конца 60-х гг. XX в. В таких системах использовались процессоры со специализированными системами команд, а конфигурация комплексов жестко ориентировалась на конкретный класс задач. В 70-х стали разрабатываться адаптивные вычислительные системы, гибко приспосабливающиеся к решаемым задачам. Адаптация такой системы осуществляется за счет изменения конфигурации системы, в связи с этим такие системы еще называют системами с динамической структурой. За счет динамической структуры достигается высокая производительность и устойчивость к отказам.

Системы телеобработки. Уже первоначальное использование СОД для управления производством, транспортом и материально-техническим снабжением показало, что эффективность систем можно значительно повысить, если обеспечить ввод данных непосредственно с мест их появления и выдавать результаты обработки в места их использования. Для этого необходимо связать СОД и рабочие места пользователей с помощью каналов связи. Системы, предназначенные для обработки данных, передаваемых по каналам связи, называются системами телеобработки данных (рис. 12).

 

 

Рис. 12. Система телеобработки данных

 

Пользователи (абоненты) взаимодействуют с системой посредством терминалов (абонентских пунктов), подключаемых через каналы связи к ЭВМ или ВК. Данные передаются по каналам связи в форме сообщений – блоков данных, несущих кроме собственно данных служебную информацию, необходимую для управления процессами передачи и защиты данных.

Телеобработка данных значительно повышает оперативность обслуживания пользователей и позволяет создавать крупномасштабные системы, обеспечивающие доступ широкого круга пользователей к информации.

Глобальные вычислительные сети. С ростом масштабов применения ЭВМ практически во всех сферах деятельности человека возникла необходимость объединения СОД, обслуживающих отдельные предприятия и коллективы.

В конце 60-х гг. XX в. был предложен способ построения вычислительных сетей, объединяющих ЭВМ (ВК) с помощью базовой сети передачи данных (СПД) (рис. 13).

 

Рис. 13. Структура глобальной компьютерной сети

 

Ядром системы является базовая сеть передачи данных (СПД), состоящая из каналов связи и узлов связи (УС). Узлы связи принимают данные и передают их в направлении, обеспечивающем доставку данных абоненту. ЭВМ подключаются к узлам связи. Совокупность ЭВМ, объединенных сетью передачи данных, образует сеть ЭВМ. Совокупность терминалов (Т) и средств связи, обеспечивающих подключение терминалов к ЭВМ, образует терминальную сеть. Таким образом, глобальная вычислительная сеть представляет собой композицию базовой сети передачи данных, сети ЭВМ и терминальной сети.

Глобальные вычислительные сети – наиболее эффективный способ построения крупномасштабных СОД. Использование вычислительных сетей позволяет автоматизировать управление отраслями производства, транспортом, материально-техническим снабжением в масштабе крупных регионов и страны в целом.

Локальные вычислительные сети. К концу 70-х гг. XX в. в сфере обработки данных широкое распространение наряду с большими ЭВМ общего назначения получили мини- и микроЭВМ и начали применяться персональные компьютеры. При этом для обработки данных в рамках одного учреждения использовалось большое число ЭВМ, в то время как коллективный характер труда требовал оперативного обмена данными между пользователями ЭВМ. В этот период времени был разработан эффективный способ объединения ЭВМ, расположенных на небольшом расстоянии друг от друга, – локальные вычислительные сети.

Локальная вычислительная сеть (ЛВС) – это совокупность близкорасположенных ЭВМ, которые оснащены последовательными интерфейсами и программными средствами, обеспечивающими информационное взаимодействие между процессами в различных ЭВМ. Типичная структура ЛВС приведена на рис. 14.

 

Рис. 14. Структура локальной компьютерной сети

 

Все ЭВМ сопрягаются между собой с помощью моноканала. Длина моноканала не превышает нескольких сотен метров. ЭВМ подсоединяются к моноканалу посредством сетевых адаптеров (СА), иначе говоря, контроллеров сети, реализующих операции ввода-вывода. Наличие в такой структуре одного канала для обмена данными существенно упрощает процедуры установления соединений и обмена данными между ЭВМ. Поэтому сетевое программное обеспечение ЭВМ оказывается более простым, чем в глобальных ВС.

 

Программное обеспечение информатики

Термин «программное обеспечение» относится ко всем программам, составленным для выполнения на ЭВМ. Объем программ может составлять от нескольких… Другой класс программного обеспечения – это программы системного назначения,… – операционные системы;

Инструментальные языки и системы программирования

Разработка системного и прикладного программного обеспечения на ЭВМ осуществляется с помощью языков программирования. Наиболее элементарным языком… В целях упрощения техники программирования были разработаны алгоритмические… Программа, написанная на любом из языков, имеющих более высокий уровень, чем машинный, называется исходной программой…

– Конец работы –

Используемые теги: Глава, Введение, информатику0.063

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЛАВА 1. ВВЕДЕНИЕ В ИНФОРМАТИКУ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Конспект лекций по дисциплине Информатика Введение в информатику
Введение в информатику Определение инфоpматики В году... Формы существования информации... Информация может существовать в самых разнообразных формах...

Глава I Берлинский кризис 1948 – 1949 гг. Глава II Берлинский кризис 1953 гг. Глава III Берлинский кризис 1958 – 1961 гг.
Введение... Глава I Берлинский кризис гг...

Лекции по курсу Информатика Лекция 1. Основные понятия и методы теории информатики и кодирования. Информатика как научная дисциплина. Понятие информации и информационных процессов
Лекция Основные понятия и методы теории информатики и кодирования... Информатика как научная дисциплина... Понятие информации и информационных процессов...

ЛЕКЦИЯ 1. 3 ПОНЯТИЕ ПРАВОВОЙ ИНФОРМАТИКИ И ЕЕ ПРЕДМЕТ. Правовая информатика как наука и учебная дисциплина. О месте правовой информатики в системе наук и правоведении. 14
ВВЕДЕНИЕ... ЛЕКЦИЯ... ПОНЯТИЕ ПРАВОВОЙ ИНФОРМАТИКИ И ЕЕ ПРЕДМЕТ Правовая информатика как наука и учебная дисциплина...

ЛЕКЦИИ ПО КУРСУ ИНФОРМАТИКА Лекция 1. Введение. История информатики. Измерение
Лекция... Введение История информатики Измерение...

КУРС ЛЕКЦИЙ по дисциплине Информатика Лекция 1 1. Введение в информатику
Федеральное агентство по образованию... Государственное образовательное учреждение... высшего профессионального образования...

Глава 1. Введение в информатику
Содержание Что такое инфоpматика Что такое информация В каком виде существует информация Как переда тся информация... Что такое инфоpматика...

Тема урока: Информация и её виды. Что изучает информатика? Техника безопасности в компьютерном классе Урок информатики в 10 классе 1 Из материалов сайта
Урок информатики в классе... Из материалов сайта Скородянской средней школы Губкинского района... Цель урока Познакомить учащихся с новым предметом Изучить понятие информации Воспитание умения слушать учителя...

Лекция 1. Введение. Понятие информатики
Структура информатики... Информатика в широком смысле представляет собой единство разнообразных... Информатику в узком смысле можно представить как состоящую из трех взаимосвязанных частей технических средств...

Налог на прибыль. Анализ изменений налогообложения прибыли в связи с введением в действие главы 25 НК РФ "Налог на прибыль организаций"
Прибыль определяется как разница между ценой продажи изделия и затратами на его создание. Схема 1. Цена изделияЗатраты на производство себестоимостьПрибыль На уровне… Примечание.

0.037
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам