рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ СХЕМЫ

ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ СХЕМЫ - Методические Указания, раздел Информатика, Методические указания к лабораторным работам По курсу для бакалавров направления подготовки 6.051001 «Метрология и информационно-измерительные технологии» Работа С Электронной Системой Моделирования Ewb Включает В Себя Три Основных ...

Работа с электронной системой моделирования EWB включает в себя три основных этапа: создание схемы, выбор и подключение измерительных приборов, и, наконец, активация схемы – расчет процессов, протекающих в исследуемом устройстве.

В общем случае процесс создания схемы начинается с размещения на рабочем поле EWB компонентов из библиотеки программы. Четырнадцать разделов библиотеки программы EBW поочередно могут быть вызваны с помощью иконок, расположенных на панели инструментов (рис.1). Каталог выбранного раздела библиотеки располагается в вертикальном окне справа или слева от рабочего поля (устанавливается в любое место перетаскиванием стандартным способом – за шапку заголовка). Для открытия каталога нужного раздела библиотеки необходимо подвести курсор мыши к соответствующей иконке и нажать один раз ее левую кнопку, после чего серый фон иконки меняется на светло-серый. Необходимый для создания схемы значок (символ) компонента переносится из каталога на рабочее поле программы движением мыши при нажатой левой кнопке, после чего кнопка отпускается (для фиксирования символа). При размещении компонентов схемы на рабочем поле программы можно также воспользоваться контекстным меню, возникающим при нажатии на правую клавишу мыши на свободном месте рабочего поля. На этом этапе необходимо предусмотреть место для размещения контрольных точек и иконок контрольно-измерительных приборов.

 

Рисунок 1 - Каталоги библиотеки компонентов EWB

 

Выделенный компонент схемы (отображается красным цветом) можно повернуть (с помощью сочетания клавиш Ctrl+R, контекстного меню, кнопок на панели инструментов или пункта меню Circuit>Rotate) или зеркально отразить относительно вертикальной (горизонтальной) оси (команда меню Circuit>Flip Vertical (Horizontal), контекстное меню, кнопки на панели инструментов). При повороте большинство компонентов поворачиваются на 90o против часовой стрелки при каждом выполнении команды, для измерительных приборов (амперметр, вольтметр и др.) меняются местами клеммы подключения.

В готовой схеме пользоваться поворотом и отражением элементов нецелесообразно, поскольку это чаще всего приводит к путанице соединительных проводов – в этом случае компонент нужно отключить от цепи, и только потом вращать (отражать).

С помощью двойного щелчка по значку компонента можно изменить его свойства. В раскрывающемся диалоговом окне устанавливаются требуемые параметры (цвет проводника, сопротивление резистора, тип транзистора и т.д.) и выбор подтверждается нажатием кнопки «Ok» или клавиши Enter на клавиатуре. Для большого числа компонентов можно выбрать параметры, соответствующие реальным элементам (диодам, транзисторам и т.п.) различных производителей.

Если в схеме используются компоненты одинакового номинала (например, резисторы с одинаковым сопротивлением), то номинал такого компонента рекомендуется задать непосредственно в каталоге библиотеки, и затем переносить компоненты в нужном количестве на рабочее поле. Для изменения номинала компонента необходимо два раза щелкнуть мышью по символу его графического изображения и в раскрывающемся после этого окне внести изменения.

При создании схем удобно также пользоваться динамическим меню, которое вызывается нажатием правой кнопки мыши. Меню содержит команды Help (помощь), Paste (вставить), Zoom In (увеличить), Zoom Out (уменьшить), Schematic Options (параметры схемы), а также команды Add <Название компонента>. Эта команда позволяет добавить на рабочее поле компонента, не обращаясь к каталогам библиотеки. Количество команд Add <Название компонента> в списке меню определяется количеством типов компонентов (резисторов, знака заземления и т.д.), уже имеющихся на рабочем поле.

После размещения компонентов производится соединение их выводов проводниками. При этом необходимо учитывать, что к выводу компонента можно подключить только один проводник. Для выполнения подключения курсор мыши подводится к выводу компонента и после появлении площадки нажимается левая кнопка и появляющийся при этом проводник протягивается к выводу другого компонента до появления на нем такой же площадки, после чего кнопка мыши отпускается, и соединение готово. При необходимости подключения к этим выводам других проводников в библиотеке Basic выбирается точка (символ соединения) и переносится на ранее установленный проводник. Чтобы точка почернела (первоначально она имеет красный цвет), необходимо щелкнуть мышью по свободному месту рабочего поля. Если эта точка действительно имеет электрическое соединение с проводником, то она полностью окрашивается черным цветом. Если на ней виден след от пересекающего проводника, то электрического соединения нет и точку необходимо установить заново. После удачной установки к точке соединения можно подключить еще два проводника. Если соединение нужно разорвать, курсор подводится к одному из выводов компонентов или точке соединения и при появлении площадки нажимается левая кнопка, проводник отводится на свободное место рабочего поля, после чего кнопка отпускается.

Если при отключении проводника от точки соединения к ней остаются присоединенными только два проводника, то она автоматически удаляется из схемы, что иногда бывает неудобным. Отключить данный тип поведения можно, сбросив флажок с опции Auto-delete connectors (Circuit>Schematic Options…>Wiring). Если необходимо подключить вывод к имеющемуся на схеме проводнику, то проводник от вывода компонента курсором подводится к указанному проводнику и после появления точки соединения кнопка мыши отпускается. Следует отметить, что прокладка соединительных проводников производится автоматически, причем препятствия – компоненты и другие проводники – огибаются по ортогональным направлениям (по горизонтали или вертикали). Точка соединения может быть использована не только для подключения проводников, но и для введения надписей (например, указания величины тока в проводнике, его функционального назначения и т.п.). Для этого необходимо дважды щелкнуть по точке и в раскрывшемся окне ввести необходимую надпись. При обозначении компонентов необходимо придерживаться рекомендаций и правил, предусмотренных ЕСКД (единой системой конструкторской документации). Подключение к схеме контрольно-измерительных приборов производится аналогично.

Для таких приборов, как осциллограф или логический анализатор, соединения целесообразно проводить цветными проводниками, поскольку их цвет определяет цвет соответствующей осциллограммы.

Каждый элемент может быть передвинут на новое место. Для этого он должен быть выделен и перетащен с помощью мышки. При этом расположение соединительных проводов изменится автоматически. Можно также переместить целую группу элементов: для этого их нужно последовательно выделять мышкой при нажатой клавише Ctrl, а затем перетащить их в новое место. Если необходимо переместить отдельный сегмент проводника, к нему подводится курсор, нажимается левая кнопка и, после появления в вертикальной или горизонтальной плоскости двойного курсора, производятся нужные перемещения.

После подготовки схемы рекомендуется составить ее описание (соответствующее окно вызывается из меню Window>Description или с помощью сочетания клавиш Ctrl+D).

 

– Конец работы –

Эта тема принадлежит разделу:

Методические указания к лабораторным работам По курсу для бакалавров направления подготовки 6.051001 «Метрология и информационно-измерительные технологии»

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ... ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ... Методические указания к лабораторным работам По курсу для...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ СХЕМЫ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

По курсу
«МИКРО - И НАНОЭЛЕКТРОНИКА» для бакалавров направления подготовки 6.051001 «Метрология и информационно-измерительные технологии» дневного и заочного отде

ОПИСАНИЕ ОСНОВНЫХ ЭЛЕМЕНТОВ БИБЛИОТЕКИ
В электронной системе Electronic Workbench имеется четырнадцать разделов библиотеки компонентов, которые могут быть использованы при моделировании. Ниже приводится краткая справка по основным компо

Мультиметр (Multimetr)
Мультиметр используется для измерения: напряжения (постоянного и переменного); тока (постоянного и переменного); сопротивления; уровня напряжения в децибелах. Для настро

Функциональный генератор (Function Generator)
Функциональный генератор является идеальным источником напряжения, который вырабатывает сигналы синусоидальной, прямоугольной или треугольной формы. На экран выводится уменьшенное изображение генер

Осциллограф (Oscilloscope)
Виртуальный осциллограф, который имитируется программой Electronіcs Workbench, представляет собой аналог двухлучевого запоминающего осциллографа и имеет две модификации: простую и расширенную. Из-з

Измеритель АЧХ и ФЧХ (Bode Plotter)
На схему выводится уменьшенное изображение измерителя АЧХ и ФЧХ(рис. 12). Подключение прибора к исследуемой схеме осуществляется с помощью зажимов IN (вход) и OUT (выход).

Постоянного напряжения
Собрать схему в соответствии с рис.1.3. Источник питания +12V и заземление (обязательное в большинстве схем) переносится при помощи манипулятора мышь c панели источники (Sourсes

Эксперимент 2. Измерение величины постоянного тока
Собрать схему в соответствии с рис.1.4. Мультиметр должен быть включен в режиме измерения силы тока (А). Получить значение величины постоянного тока I = 12.00 mA. Изме

Эксперимент 3. Измерение сопротивления омметром
Собрать схему в соответствии с рис 1.5. Мультиметр в режиме измерения сопротивлений (Ω). Получить заданное значение сопротивления R =1.0000 кОм Изменить величину

Краткие сведенья из теории
Одним из видов преобразований сигнала является изменение его амплитуды. Обычно – это получение данного напряжения Uвых из большего по величине Uвх. Эта операция выполняется де

Эксперимент 1. Исследование резистивного делителя напряжения
1. Соберите схему делителя напряжения, представленную на рис. 2.1. при R1 = R2 = 10 кОм. Подайте на него напряжение UВХ (варианты напряжений приведены в табл.2.1).

Краткие сведения из теории
1. Комплекс емкостного сопротивления , (3.1) где хС ‑ модуль емкостного сопротивления вычисляется по форм

Эксперимент 1. Резистор на переменном токе
Исходные данные: Частота f = 50 Гц, R1 = 1 Ом. Действующее значение напряжения Е, В и величину сопротивления R2, Ом взять из табл.3.1. 1.1. Измерение действующего знач

Эксперимент 2. Конденсатор на переменном токе
Исходные данные:Частота f = 50 Гц, R1 = 1 Ом. Действующее значение напряжения Е, В и величину емкости С1, мкФ взять из табл.3.3. 2.1.

Эксперимент 3. Катушка индуктивности на переменном токе
Исходные данные: Частота f = 50 Гц, R1 = 1 Ом. Действующее значение напряжения Е, В и величину индуктивности L1, мГн взять из табл.3.5.

Эксперимент 4. RC-цепь на переменном токе
Исходные данные: Частота f = 50 Гц, R1 = 1 Ом. Действующее значение напряжения Е, В, величину сопротивления R2, Ом и величину емкости С1, мкФ взять из табл.3.7.

Эксперимент 5. RL-цепь на переменном токе
Исходные данные: Частота f = 50 Гц, R1 = 1 Ом. Действующее значение напряжения Е, В, величину сопротивления R2, Ом и величину индуктивности L1, мГн взять из табл.3.9.

Краткие сведенья из теории
Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными видами проводимости: p-типа и n-типа. Переход между д

Тока через диод
1. Соберите схему, представленную на рис. 4.6. Включите схему. Мультиметр покажет напряжение на диоде Uпр при прямом смещении. Переверните диод и снова запустите схему. Теперь мультиметр

Эксперимент 4. Снятие вольтамперной характеристики диода
1. Прямая ветвь ВАХ. Соберите схему, представленную на рис. 4.8. Включите схему. Последовательно устанавливая значения ЭДС источника Е, В из табл. 4.2, запишите полученные значения напряже

Краткие сведенья из теории
Стабилитроном называют кремниевый полупроводниковый диод, ВАХ которого имеет участки малой зависимости напряжения от тока (рис. 5.1).

Через стабилитрон
Соберите схему, представленную на рис. 5.3. Тип стабилитрона, для соответствующего варианта представлен в таблице 5.1. Для всех экспериментов использовать выбранный тип диода. Таб

Параметрического стабилизатора
Соберите схему, представленную на рис. 5.3. 1. Подключите резистор RL =75 Ом параллельно стабилитрону. Значение источника ЭДС установите равным 20 В. Включите с

Краткие сведения из теории
Для преобразования переменного напряжения в постоянное напряжение применяют выпрямительные устройства. В выпрямительное устройство обычно входят трансформатор, один или несколько диодов, сглаживающ

С отводом от средней точки трансформатора
Двухполупериодная схема с выводом от средней точки, изображена на рис. 6.7, обеспечивает больший коэффициент использования трансформатора и меньший, по сравнению с однополупериодным выпрямителем, у

Биполярные транзисторы
Различают кремниевые и германиевые транзисторы. Они бывают p-n-p и n-p-n типа, на рис. 7.1 показаны их обозначения. Биполярный транзистор можно рассматривать как д

Полевые транзисторы
Полевой транзистор управляется электрическим полем, практически без затраты мощности управляющего сигнала. Среди полевых транзисторов различают шесть типов, их условные обозначения в электрических

Эксперимент 5. Определение зависимости выходного напряжения от входного для схемы с общим истоком и истокового повторителя
Схема с общим истоком соответствует схеме с общим эмиттером для биполярного транзистора. Схема с общим истоком (истоковый повторитель) обладает значительно большим сопротивлением, чем схема с общим

Краткие сведения из теории
Интегрирующие и дифференцирующие цепочки широко применяются в импульсной технике для следующих целей: Интегрирующая цепочка: - для получения сигналов, пропорциональных интегралу о

Интегрирующие и дифференцирующие цепи
  Рисунок 8.1 ‑ Дифференцирующая RC-цепь   Напряжение на резисторе R (рис.8.1)

Постоянная времени
Произведение τ = RC называют постоянной времени цепи. Если R измерять в Омах, а С – в Фарадах, то произведение RC будет измеряться в секундах. Для конденсатора емкостью 1 мкФ, подключ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги